![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > risefallfac | Structured version Visualization version GIF version |
Description: A relationship between rising and falling factorials. (Contributed by Scott Fenton, 15-Jan-2018.) |
Ref | Expression |
---|---|
risefallfac | ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (-𝑋 FallFac 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 11491 | . . . . . . 7 ⊢ (𝑋 ∈ ℂ → -𝑋 ∈ ℂ) | |
2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → -𝑋 ∈ ℂ) |
3 | elfznn 13563 | . . . . . . . 8 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | |
4 | nnm1nn0 12544 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0) | |
5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℕ0) |
6 | 5 | nn0cnd 12565 | . . . . . 6 ⊢ (𝑘 ∈ (1...𝑁) → (𝑘 − 1) ∈ ℂ) |
7 | subcl 11490 | . . . . . 6 ⊢ ((-𝑋 ∈ ℂ ∧ (𝑘 − 1) ∈ ℂ) → (-𝑋 − (𝑘 − 1)) ∈ ℂ) | |
8 | 2, 6, 7 | syl2an 595 | . . . . 5 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (-𝑋 − (𝑘 − 1)) ∈ ℂ) |
9 | 8 | mulm1d 11697 | . . . 4 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (-1 · (-𝑋 − (𝑘 − 1))) = -(-𝑋 − (𝑘 − 1))) |
10 | simpll 766 | . . . . . 6 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → 𝑋 ∈ ℂ) | |
11 | 6 | adantl 481 | . . . . . 6 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑘 − 1) ∈ ℂ) |
12 | 10, 11 | negdi2d 11616 | . . . . 5 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → -(𝑋 + (𝑘 − 1)) = (-𝑋 − (𝑘 − 1))) |
13 | 12 | negeqd 11485 | . . . 4 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → --(𝑋 + (𝑘 − 1)) = -(-𝑋 − (𝑘 − 1))) |
14 | simpl 482 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → 𝑋 ∈ ℂ) | |
15 | addcl 11221 | . . . . . 6 ⊢ ((𝑋 ∈ ℂ ∧ (𝑘 − 1) ∈ ℂ) → (𝑋 + (𝑘 − 1)) ∈ ℂ) | |
16 | 14, 6, 15 | syl2an 595 | . . . . 5 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑋 + (𝑘 − 1)) ∈ ℂ) |
17 | 16 | negnegd 11593 | . . . 4 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → --(𝑋 + (𝑘 − 1)) = (𝑋 + (𝑘 − 1))) |
18 | 9, 13, 17 | 3eqtr2rd 2775 | . . 3 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → (𝑋 + (𝑘 − 1)) = (-1 · (-𝑋 − (𝑘 − 1)))) |
19 | 18 | prodeq2dv 15900 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)(𝑋 + (𝑘 − 1)) = ∏𝑘 ∈ (1...𝑁)(-1 · (-𝑋 − (𝑘 − 1)))) |
20 | risefacval2 15987 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(𝑋 + (𝑘 − 1))) | |
21 | fzfi 13970 | . . . . . . 7 ⊢ (1...𝑁) ∈ Fin | |
22 | neg1cn 12357 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
23 | fprodconst 15955 | . . . . . . 7 ⊢ (((1...𝑁) ∈ Fin ∧ -1 ∈ ℂ) → ∏𝑘 ∈ (1...𝑁)-1 = (-1↑(♯‘(1...𝑁)))) | |
24 | 21, 22, 23 | mp2an 691 | . . . . . 6 ⊢ ∏𝑘 ∈ (1...𝑁)-1 = (-1↑(♯‘(1...𝑁))) |
25 | hashfz1 14338 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁) | |
26 | 25 | oveq2d 7436 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → (-1↑(♯‘(1...𝑁))) = (-1↑𝑁)) |
27 | 24, 26 | eqtr2id 2781 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (-1↑𝑁) = ∏𝑘 ∈ (1...𝑁)-1) |
28 | 27 | adantl 481 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) = ∏𝑘 ∈ (1...𝑁)-1) |
29 | fallfacval2 15988 | . . . . 5 ⊢ ((-𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 FallFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1))) | |
30 | 1, 29 | sylan 579 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 FallFac 𝑁) = ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1))) |
31 | 28, 30 | oveq12d 7438 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-𝑋 FallFac 𝑁)) = (∏𝑘 ∈ (1...𝑁)-1 · ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1)))) |
32 | fzfid 13971 | . . . 4 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (1...𝑁) ∈ Fin) | |
33 | 22 | a1i 11 | . . . 4 ⊢ (((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (1...𝑁)) → -1 ∈ ℂ) |
34 | 32, 33, 8 | fprodmul 15937 | . . 3 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ∏𝑘 ∈ (1...𝑁)(-1 · (-𝑋 − (𝑘 − 1))) = (∏𝑘 ∈ (1...𝑁)-1 · ∏𝑘 ∈ (1...𝑁)(-𝑋 − (𝑘 − 1)))) |
35 | 31, 34 | eqtr4d 2771 | . 2 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-𝑋 FallFac 𝑁)) = ∏𝑘 ∈ (1...𝑁)(-1 · (-𝑋 − (𝑘 − 1)))) |
36 | 19, 20, 35 | 3eqtr4d 2778 | 1 ⊢ ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (-𝑋 FallFac 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 Fincfn 8964 ℂcc 11137 1c1 11140 + caddc 11142 · cmul 11144 − cmin 11475 -cneg 11476 ℕcn 12243 ℕ0cn0 12503 ...cfz 13517 ↑cexp 14059 ♯chash 14322 ∏cprod 15882 FallFac cfallfac 15981 RiseFac crisefac 15982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9466 df-oi 9534 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-n0 12504 df-z 12590 df-uz 12854 df-rp 13008 df-fz 13518 df-fzo 13661 df-seq 14000 df-exp 14060 df-hash 14323 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-clim 15465 df-prod 15883 df-risefac 15983 df-fallfac 15984 |
This theorem is referenced by: fallrisefac 16002 0risefac 16015 binomrisefac 16019 |
Copyright terms: Public domain | W3C validator |