MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fallrisefac Structured version   Visualization version   GIF version

Theorem fallrisefac 16007
Description: A relationship between falling and rising factorials. (Contributed by Scott Fenton, 17-Jan-2018.)
Assertion
Ref Expression
fallrisefac ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · (-𝑋 RiseFac 𝑁)))

Proof of Theorem fallrisefac
StepHypRef Expression
1 nn0cn 12518 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
212timesd 12491 . . . . . . 7 (𝑁 ∈ ℕ0 → (2 · 𝑁) = (𝑁 + 𝑁))
32oveq2d 7440 . . . . . 6 (𝑁 ∈ ℕ0 → (-1↑(2 · 𝑁)) = (-1↑(𝑁 + 𝑁)))
4 nn0z 12619 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
5 m1expeven 14112 . . . . . . 7 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
64, 5syl 17 . . . . . 6 (𝑁 ∈ ℕ0 → (-1↑(2 · 𝑁)) = 1)
7 neg1cn 12362 . . . . . . . 8 -1 ∈ ℂ
8 expadd 14107 . . . . . . . 8 ((-1 ∈ ℂ ∧ 𝑁 ∈ ℕ0𝑁 ∈ ℕ0) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
97, 8mp3an1 1444 . . . . . . 7 ((𝑁 ∈ ℕ0𝑁 ∈ ℕ0) → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
109anidms 565 . . . . . 6 (𝑁 ∈ ℕ0 → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
113, 6, 103eqtr3rd 2776 . . . . 5 (𝑁 ∈ ℕ0 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
1211adantl 480 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-1↑𝑁)) = 1)
13 negneg 11546 . . . . . 6 (𝑋 ∈ ℂ → --𝑋 = 𝑋)
1413adantr 479 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → --𝑋 = 𝑋)
1514oveq1d 7439 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) = (𝑋 FallFac 𝑁))
1612, 15oveq12d 7442 . . 3 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((-1↑𝑁) · (-1↑𝑁)) · (--𝑋 FallFac 𝑁)) = (1 · (𝑋 FallFac 𝑁)))
17 expcl 14082 . . . . . 6 ((-1 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
187, 17mpan 688 . . . . 5 (𝑁 ∈ ℕ0 → (-1↑𝑁) ∈ ℂ)
1918adantl 480 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℂ)
20 negcl 11496 . . . . . 6 (𝑋 ∈ ℂ → -𝑋 ∈ ℂ)
2120negcld 11594 . . . . 5 (𝑋 ∈ ℂ → --𝑋 ∈ ℂ)
22 fallfaccl 15998 . . . . 5 ((--𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) ∈ ℂ)
2321, 22sylan 578 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (--𝑋 FallFac 𝑁) ∈ ℂ)
2419, 19, 23mulassd 11273 . . 3 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (((-1↑𝑁) · (-1↑𝑁)) · (--𝑋 FallFac 𝑁)) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁))))
25 fallfaccl 15998 . . . 4 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) ∈ ℂ)
2625mullidd 11268 . . 3 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (1 · (𝑋 FallFac 𝑁)) = (𝑋 FallFac 𝑁))
2716, 24, 263eqtr3rd 2776 . 2 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁))))
28 risefallfac 16006 . . . 4 ((-𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (--𝑋 FallFac 𝑁)))
2920, 28sylan 578 . . 3 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (-𝑋 RiseFac 𝑁) = ((-1↑𝑁) · (--𝑋 FallFac 𝑁)))
3029oveq2d 7440 . 2 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((-1↑𝑁) · (-𝑋 RiseFac 𝑁)) = ((-1↑𝑁) · ((-1↑𝑁) · (--𝑋 FallFac 𝑁))))
3127, 30eqtr4d 2770 1 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋 FallFac 𝑁) = ((-1↑𝑁) · (-𝑋 RiseFac 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  (class class class)co 7424  cc 11142  1c1 11145   + caddc 11147   · cmul 11149  -cneg 11481  2c2 12303  0cn0 12508  cz 12594  cexp 14064   FallFac cfallfac 15986   RiseFac crisefac 15987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-oi 9539  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-n0 12509  df-z 12595  df-uz 12859  df-rp 13013  df-fz 13523  df-fzo 13666  df-seq 14005  df-exp 14065  df-hash 14328  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-clim 15470  df-prod 15888  df-risefac 15988  df-fallfac 15989
This theorem is referenced by:  fallfac0  16010
  Copyright terms: Public domain W3C validator