![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pncan | Structured version Visualization version GIF version |
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
pncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
3 | 1, 2 | addcomd 11440 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
4 | addcl 11214 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
5 | subadd 11487 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) | |
6 | 4, 1, 2, 5 | syl3anc 1369 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) |
7 | 3, 6 | mpbird 257 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 (class class class)co 7414 ℂcc 11130 + caddc 11135 − cmin 11468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-ltxr 11277 df-sub 11470 |
This theorem is referenced by: pncan2 11491 addsubass 11494 pncan3oi 11500 subid1 11504 nppcan2 11515 pncand 11596 nn1m1nn 12257 nnsub 12280 elnn0nn 12538 elz2 12600 zrevaddcl 12631 nzadd 12634 qrevaddcl 12979 irradd 12981 fzrev3 13593 elfzp1b 13604 fzrevral3 13614 fzval3 13727 seqf1olem1 14032 seqf1olem2 14033 bcp1nk 14302 bcp1m1 14305 bcpasc 14306 hashbclem 14437 ccatalpha 14569 wrdind 14698 wrd2ind 14699 2cshwcshw 14802 shftlem 15041 shftval5 15051 isershft 15636 isercoll2 15641 mptfzshft 15750 telfsumo 15774 fsumparts 15778 bcxmas 15807 isum1p 15813 geolim 15842 mertenslem2 15857 mertens 15858 fsumkthpow 16026 eftlub 16079 effsumlt 16081 eirrlem 16174 dvdsadd 16272 prmind2 16649 iserodd 16797 fldivp1 16859 prmpwdvds 16866 pockthlem 16867 prmreclem4 16881 prmreclem6 16883 4sqlem11 16917 vdwapun 16936 ramub1lem1 16988 ramcl 16991 efgsval2 19681 efgsrel 19682 shft2rab 25430 uniioombllem3 25507 uniioombllem4 25508 dvexp 25878 dvfsumlem1 25953 degltp1le 26002 ply1divex 26065 plyaddlem1 26140 plymullem1 26141 dvply1 26211 dvply2g 26212 dvply2gOLD 26213 vieta1lem2 26239 aaliou3lem7 26277 dvradcnv 26350 pserdvlem2 26358 abssinper 26448 advlogexp 26582 atantayl3 26864 leibpilem2 26866 emcllem2 26922 harmonicbnd4 26936 basellem8 27013 ppiprm 27076 ppinprm 27077 chtprm 27078 chtnprm 27079 chpp1 27080 chtub 27138 perfectlem1 27155 perfectlem2 27156 perfect 27157 bcp1ctr 27205 lgsvalmod 27242 lgseisen 27305 lgsquadlem1 27306 lgsquad2lem1 27310 2sqlem10 27354 rplogsumlem1 27410 selberg2lem 27476 logdivbnd 27482 pntrsumo1 27491 pntpbnd2 27513 clwwlkf1 29852 subfacp1lem5 34784 subfacp1lem6 34785 subfacval2 34787 subfaclim 34788 cvmliftlem7 34891 cvmliftlem10 34894 mblfinlem2 37120 itg2addnclem3 37135 fdc 37207 mettrifi 37219 heiborlem4 37276 heiborlem6 37278 lzenom 42162 2nn0ind 42338 jm2.17a 42353 jm2.17b 42354 jm2.17c 42355 evensumeven 47019 perfectALTVlem2 47034 perfectALTV 47035 |
Copyright terms: Public domain | W3C validator |