MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgsval2 Structured version   Visualization version   GIF version

Theorem efgsval2 19681
Description: Value of the auxiliary function 𝑆 defining a sequence of extensions. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w 𝑊 = ( I ‘Word (𝐼 × 2o))
efgval.r = ( ~FG𝐼)
efgval2.m 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
efgval2.t 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
efgred.d 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
efgred.s 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
Assertion
Ref Expression
efgsval2 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ ⟨“𝐵”⟩)) = 𝐵)
Distinct variable groups:   𝑦,𝑧   𝑡,𝑛,𝑣,𝑤,𝑦,𝑧,𝑚,𝑥   𝑚,𝑀   𝑥,𝑛,𝑀,𝑡,𝑣,𝑤   𝑘,𝑚,𝑡,𝑥,𝑇   𝑘,𝑛,𝑣,𝑤,𝑦,𝑧,𝑊,𝑚,𝑡,𝑥   ,𝑚,𝑡,𝑥,𝑦,𝑧   𝑚,𝐼,𝑛,𝑡,𝑣,𝑤,𝑥,𝑦,𝑧   𝐷,𝑚,𝑡
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑣,𝑘,𝑛)   (𝑤,𝑣,𝑘,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤,𝑣,𝑡,𝑘,𝑚,𝑛)   𝑇(𝑦,𝑧,𝑤,𝑣,𝑛)   𝐼(𝑘)   𝑀(𝑦,𝑧,𝑘)

Proof of Theorem efgsval2
StepHypRef Expression
1 efgval.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2o))
2 efgval.r . . . 4 = ( ~FG𝐼)
3 efgval2.m . . . 4 𝑀 = (𝑦𝐼, 𝑧 ∈ 2o ↦ ⟨𝑦, (1o𝑧)⟩)
4 efgval2.t . . . 4 𝑇 = (𝑣𝑊 ↦ (𝑛 ∈ (0...(♯‘𝑣)), 𝑤 ∈ (𝐼 × 2o) ↦ (𝑣 splice ⟨𝑛, 𝑛, ⟨“𝑤(𝑀𝑤)”⟩⟩)))
5 efgred.d . . . 4 𝐷 = (𝑊 𝑥𝑊 ran (𝑇𝑥))
6 efgred.s . . . 4 𝑆 = (𝑚 ∈ {𝑡 ∈ (Word 𝑊 ∖ {∅}) ∣ ((𝑡‘0) ∈ 𝐷 ∧ ∀𝑘 ∈ (1..^(♯‘𝑡))(𝑡𝑘) ∈ ran (𝑇‘(𝑡‘(𝑘 − 1))))} ↦ (𝑚‘((♯‘𝑚) − 1)))
71, 2, 3, 4, 5, 6efgsval 19679 . . 3 ((𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆 → (𝑆‘(𝐴 ++ ⟨“𝐵”⟩)) = ((𝐴 ++ ⟨“𝐵”⟩)‘((♯‘(𝐴 ++ ⟨“𝐵”⟩)) − 1)))
8 s1cl 14578 . . . . . . . . 9 (𝐵𝑊 → ⟨“𝐵”⟩ ∈ Word 𝑊)
9 ccatlen 14551 . . . . . . . . 9 ((𝐴 ∈ Word 𝑊 ∧ ⟨“𝐵”⟩ ∈ Word 𝑊) → (♯‘(𝐴 ++ ⟨“𝐵”⟩)) = ((♯‘𝐴) + (♯‘⟨“𝐵”⟩)))
108, 9sylan2 592 . . . . . . . 8 ((𝐴 ∈ Word 𝑊𝐵𝑊) → (♯‘(𝐴 ++ ⟨“𝐵”⟩)) = ((♯‘𝐴) + (♯‘⟨“𝐵”⟩)))
11 s1len 14582 . . . . . . . . 9 (♯‘⟨“𝐵”⟩) = 1
1211oveq2i 7425 . . . . . . . 8 ((♯‘𝐴) + (♯‘⟨“𝐵”⟩)) = ((♯‘𝐴) + 1)
1310, 12eqtrdi 2783 . . . . . . 7 ((𝐴 ∈ Word 𝑊𝐵𝑊) → (♯‘(𝐴 ++ ⟨“𝐵”⟩)) = ((♯‘𝐴) + 1))
1413oveq1d 7429 . . . . . 6 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ((♯‘(𝐴 ++ ⟨“𝐵”⟩)) − 1) = (((♯‘𝐴) + 1) − 1))
15 lencl 14509 . . . . . . . . . 10 (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℕ0)
1615nn0cnd 12558 . . . . . . . . 9 (𝐴 ∈ Word 𝑊 → (♯‘𝐴) ∈ ℂ)
17 ax-1cn 11190 . . . . . . . . 9 1 ∈ ℂ
18 pncan 11490 . . . . . . . . 9 (((♯‘𝐴) ∈ ℂ ∧ 1 ∈ ℂ) → (((♯‘𝐴) + 1) − 1) = (♯‘𝐴))
1916, 17, 18sylancl 585 . . . . . . . 8 (𝐴 ∈ Word 𝑊 → (((♯‘𝐴) + 1) − 1) = (♯‘𝐴))
2016addlidd 11439 . . . . . . . 8 (𝐴 ∈ Word 𝑊 → (0 + (♯‘𝐴)) = (♯‘𝐴))
2119, 20eqtr4d 2770 . . . . . . 7 (𝐴 ∈ Word 𝑊 → (((♯‘𝐴) + 1) − 1) = (0 + (♯‘𝐴)))
2221adantr 480 . . . . . 6 ((𝐴 ∈ Word 𝑊𝐵𝑊) → (((♯‘𝐴) + 1) − 1) = (0 + (♯‘𝐴)))
2314, 22eqtrd 2767 . . . . 5 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ((♯‘(𝐴 ++ ⟨“𝐵”⟩)) − 1) = (0 + (♯‘𝐴)))
2423fveq2d 6895 . . . 4 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ((𝐴 ++ ⟨“𝐵”⟩)‘((♯‘(𝐴 ++ ⟨“𝐵”⟩)) − 1)) = ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))))
25 simpl 482 . . . . 5 ((𝐴 ∈ Word 𝑊𝐵𝑊) → 𝐴 ∈ Word 𝑊)
268adantl 481 . . . . 5 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ⟨“𝐵”⟩ ∈ Word 𝑊)
27 1nn 12247 . . . . . . . 8 1 ∈ ℕ
2811, 27eqeltri 2824 . . . . . . 7 (♯‘⟨“𝐵”⟩) ∈ ℕ
29 lbfzo0 13698 . . . . . . 7 (0 ∈ (0..^(♯‘⟨“𝐵”⟩)) ↔ (♯‘⟨“𝐵”⟩) ∈ ℕ)
3028, 29mpbir 230 . . . . . 6 0 ∈ (0..^(♯‘⟨“𝐵”⟩))
3130a1i 11 . . . . 5 ((𝐴 ∈ Word 𝑊𝐵𝑊) → 0 ∈ (0..^(♯‘⟨“𝐵”⟩)))
32 ccatval3 14555 . . . . 5 ((𝐴 ∈ Word 𝑊 ∧ ⟨“𝐵”⟩ ∈ Word 𝑊 ∧ 0 ∈ (0..^(♯‘⟨“𝐵”⟩))) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))) = (⟨“𝐵”⟩‘0))
3325, 26, 31, 32syl3anc 1369 . . . 4 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ((𝐴 ++ ⟨“𝐵”⟩)‘(0 + (♯‘𝐴))) = (⟨“𝐵”⟩‘0))
34 s1fv 14586 . . . . 5 (𝐵𝑊 → (⟨“𝐵”⟩‘0) = 𝐵)
3534adantl 481 . . . 4 ((𝐴 ∈ Word 𝑊𝐵𝑊) → (⟨“𝐵”⟩‘0) = 𝐵)
3624, 33, 353eqtrd 2771 . . 3 ((𝐴 ∈ Word 𝑊𝐵𝑊) → ((𝐴 ++ ⟨“𝐵”⟩)‘((♯‘(𝐴 ++ ⟨“𝐵”⟩)) − 1)) = 𝐵)
377, 36sylan9eqr 2789 . 2 (((𝐴 ∈ Word 𝑊𝐵𝑊) ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ ⟨“𝐵”⟩)) = 𝐵)
38373impa 1108 1 ((𝐴 ∈ Word 𝑊𝐵𝑊 ∧ (𝐴 ++ ⟨“𝐵”⟩) ∈ dom 𝑆) → (𝑆‘(𝐴 ++ ⟨“𝐵”⟩)) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  {crab 3427  cdif 3941  c0 4318  {csn 4624  cop 4630  cotp 4632   ciun 4991  cmpt 5225   I cid 5569   × cxp 5670  dom cdm 5672  ran crn 5673  cfv 6542  (class class class)co 7414  cmpo 7416  1oc1o 8473  2oc2o 8474  cc 11130  0cc0 11132  1c1 11133   + caddc 11135  cmin 11468  cn 12236  ...cfz 13510  ..^cfzo 13653  chash 14315  Word cword 14490   ++ cconcat 14546  ⟨“cs1 14571   splice csplice 14725  ⟨“cs2 14818   ~FG cefg 19654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-n0 12497  df-z 12583  df-uz 12847  df-fz 13511  df-fzo 13654  df-hash 14316  df-word 14491  df-concat 14547  df-s1 14572
This theorem is referenced by:  efgsfo  19687  efgredlemd  19692  efgrelexlemb  19698
  Copyright terms: Public domain W3C validator