![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0ge0 | Structured version Visualization version GIF version |
Description: A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
nn0ge0 | ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 12498 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | nngt0 12267 | . . . 4 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
3 | id 22 | . . . . 5 ⊢ (𝑁 = 0 → 𝑁 = 0) | |
4 | 3 | eqcomd 2734 | . . . 4 ⊢ (𝑁 = 0 → 0 = 𝑁) |
5 | 2, 4 | orim12i 907 | . . 3 ⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (0 < 𝑁 ∨ 0 = 𝑁)) |
6 | 1, 5 | sylbi 216 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 < 𝑁 ∨ 0 = 𝑁)) |
7 | 0re 11240 | . . 3 ⊢ 0 ∈ ℝ | |
8 | nn0re 12505 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
9 | leloe 11324 | . . 3 ⊢ ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) | |
10 | 7, 8, 9 | sylancr 586 | . 2 ⊢ (𝑁 ∈ ℕ0 → (0 ≤ 𝑁 ↔ (0 < 𝑁 ∨ 0 = 𝑁))) |
11 | 6, 10 | mpbird 257 | 1 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 846 = wceq 1534 ∈ wcel 2099 class class class wbr 5142 ℝcr 11131 0cc0 11132 < clt 11272 ≤ cle 11273 ℕcn 12236 ℕ0cn0 12496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-n0 12497 |
This theorem is referenced by: nn0nlt0 12522 nn0ge0i 12523 nn0le0eq0 12524 nn0p1gt0 12525 0mnnnnn0 12528 nn0addge1 12542 nn0addge2 12543 nn0negleid 12548 nn0ge0d 12559 nn0ge0div 12655 xnn0ge0 13139 xnn0xadd0 13252 nn0rp0 13458 xnn0xrge0 13509 0elfz 13624 fz0fzelfz0 13633 fz0fzdiffz0 13636 fzctr 13639 difelfzle 13640 fzoun 13695 nn0p1elfzo 13701 elfzodifsumelfzo 13724 fvinim0ffz 13777 subfzo0 13780 adddivflid 13809 modmuladdnn0 13906 addmodid 13910 modifeq2int 13924 modfzo0difsn 13934 nn0sq11 14122 zzlesq 14195 bernneq 14217 bernneq3 14219 faclbnd 14275 faclbnd6 14284 facubnd 14285 bcval5 14303 hashneq0 14349 fi1uzind 14484 ccat0 14552 ccat2s1fvw 14614 repswswrd 14760 nn0sqeq1 15249 rprisefaccl 15993 dvdseq 16284 evennn02n 16320 nn0ehalf 16348 nn0oddm1d2 16355 bitsinv1 16410 smuval2 16450 gcdn0gt0 16486 nn0gcdid0 16489 absmulgcd 16518 algcvgblem 16541 algcvga 16543 lcmgcdnn 16575 lcmfun 16609 lcmfass 16610 2mulprm 16657 nonsq 16724 hashgcdlem 16750 odzdvds 16757 pcfaclem 16860 prmirredlem 21391 prmirred 21393 coe1sclmul 22194 coe1sclmul2 22196 fvmptnn04ifb 22746 mdegle0 26006 plypf1 26139 dgrlt 26194 fta1 26236 taylfval 26286 logbgcd1irr 26719 eldmgm 26947 basellem3 27008 bcmono 27203 lgsdinn0 27271 2sq2 27359 2sqnn0 27364 2sqreulem1 27372 dchrisumlem1 27415 dchrisumlem2 27416 wwlksnextwrd 29701 wwlksnextfun 29702 wwlksnextinj 29703 wwlksnextproplem2 29714 wwlksnextproplem3 29715 wrdt2ind 32668 xrsmulgzz 32730 hashf2 33697 hasheuni 33698 reprinfz1 34248 0nn0m1nnn0 34716 faclimlem1 35331 rrntotbnd 37303 factwoffsmonot 41688 gcdnn0id 41883 pell14qrgt0 42273 pell1qrgaplem 42287 monotoddzzfi 42357 jm2.17a 42375 jm2.22 42410 rmxdiophlem 42430 rexanuz2nf 44869 wallispilem3 45449 stirlinglem7 45462 elfz2z 46689 fz0addge0 46693 elfzlble 46694 2ffzoeq 46702 iccpartigtl 46757 sqrtpwpw2p 46872 flsqrt 46927 nn0e 47031 nn0sumltlt 47408 nn0eo 47595 fllog2 47635 dignn0fr 47668 dignnld 47670 dig1 47675 itcovalt2lem2lem1 47740 |
Copyright terms: Public domain | W3C validator |