MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bernneq3 Structured version   Visualization version   GIF version

Theorem bernneq3 14226
Description: A corollary of bernneq 14224. (Contributed by Mario Carneiro, 11-Mar-2014.)
Assertion
Ref Expression
bernneq3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃𝑁))

Proof of Theorem bernneq3
StepHypRef Expression
1 nn0re 12512 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
21adantl 481 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℝ)
3 peano2re 11418 . . 3 (𝑁 ∈ ℝ → (𝑁 + 1) ∈ ℝ)
42, 3syl 17 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ∈ ℝ)
5 eluzelre 12864 . . 3 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
6 reexpcl 14076 . . 3 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝑃𝑁) ∈ ℝ)
75, 6sylan 579 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃𝑁) ∈ ℝ)
82ltp1d 12175 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑁 + 1))
9 uz2m1nn 12938 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (𝑃 − 1) ∈ ℕ)
109adantr 480 . . . . . 6 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℕ)
1110nnred 12258 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃 − 1) ∈ ℝ)
1211, 2remulcld 11275 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → ((𝑃 − 1) · 𝑁) ∈ ℝ)
13 peano2re 11418 . . . 4 (((𝑃 − 1) · 𝑁) ∈ ℝ → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ)
1412, 13syl 17 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ∈ ℝ)
15 1red 11246 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℝ)
16 nn0ge0 12528 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
1716adantl 481 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑁)
1810nnge1d 12291 . . . . 5 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 1 ≤ (𝑃 − 1))
192, 11, 17, 18lemulge12d 12183 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ ((𝑃 − 1) · 𝑁))
202, 12, 15, 19leadd1dd 11859 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (((𝑃 − 1) · 𝑁) + 1))
215adantr 480 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℝ)
22 simpr 484 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
23 eluzge2nn0 12902 . . . . . 6 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ0)
24 nn0ge0 12528 . . . . . 6 (𝑃 ∈ ℕ0 → 0 ≤ 𝑃)
2523, 24syl 17 . . . . 5 (𝑃 ∈ (ℤ‘2) → 0 ≤ 𝑃)
2625adantr 480 . . . 4 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 0 ≤ 𝑃)
27 bernneq2 14225 . . . 4 ((𝑃 ∈ ℝ ∧ 𝑁 ∈ ℕ0 ∧ 0 ≤ 𝑃) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃𝑁))
2821, 22, 26, 27syl3anc 1369 . . 3 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (((𝑃 − 1) · 𝑁) + 1) ≤ (𝑃𝑁))
294, 14, 7, 20, 28letrd 11402 . 2 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑁 + 1) ≤ (𝑃𝑁))
302, 4, 7, 8, 29ltletrd 11405 1 ((𝑃 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → 𝑁 < (𝑃𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099   class class class wbr 5148  cfv 6548  (class class class)co 7420  cr 11138  0cc0 11139  1c1 11140   + caddc 11142   · cmul 11144   < clt 11279  cle 11280  cmin 11475  cn 12243  2c2 12298  0cn0 12503  cuz 12853  cexp 14059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-n0 12504  df-z 12590  df-uz 12854  df-seq 14000  df-exp 14060
This theorem is referenced by:  climcnds  15830  bitsfzo  16410  bitsinv1  16417  pcfaclem  16867  pcfac  16868  chpchtsum  27165  bposlem1  27230
  Copyright terms: Public domain W3C validator