![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ngpds | Structured version Visualization version GIF version |
Description: Value of the distance function in terms of the norm of a normed group. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
ngpds.n | ⊢ 𝑁 = (norm‘𝐺) |
ngpds.x | ⊢ 𝑋 = (Base‘𝐺) |
ngpds.m | ⊢ − = (-g‘𝐺) |
ngpds.d | ⊢ 𝐷 = (dist‘𝐺) |
Ref | Expression |
---|---|
ngpds | ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpds.n | . . . . . 6 ⊢ 𝑁 = (norm‘𝐺) | |
2 | ngpds.m | . . . . . 6 ⊢ − = (-g‘𝐺) | |
3 | ngpds.d | . . . . . 6 ⊢ 𝐷 = (dist‘𝐺) | |
4 | ngpds.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
5 | eqid 2727 | . . . . . 6 ⊢ (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ↾ (𝑋 × 𝑋)) | |
6 | 1, 2, 3, 4, 5 | isngp2 24493 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ MetSp ∧ (𝑁 ∘ − ) = (𝐷 ↾ (𝑋 × 𝑋)))) |
7 | 6 | simp3bi 1145 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → (𝑁 ∘ − ) = (𝐷 ↾ (𝑋 × 𝑋))) |
8 | 7 | 3ad2ant1 1131 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁 ∘ − ) = (𝐷 ↾ (𝑋 × 𝑋))) |
9 | 8 | oveqd 7431 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝑁 ∘ − )𝐵) = (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵)) |
10 | ngpgrp 24495 | . . . . . 6 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
11 | 4, 2 | grpsubf 18966 | . . . . . 6 ⊢ (𝐺 ∈ Grp → − :(𝑋 × 𝑋)⟶𝑋) |
12 | 10, 11 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → − :(𝑋 × 𝑋)⟶𝑋) |
13 | 12 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → − :(𝑋 × 𝑋)⟶𝑋) |
14 | opelxpi 5709 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | |
15 | 14 | 3adant1 1128 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) |
16 | fvco3 6991 | . . . 4 ⊢ (( − :(𝑋 × 𝑋)⟶𝑋 ∧ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) → ((𝑁 ∘ − )‘〈𝐴, 𝐵〉) = (𝑁‘( − ‘〈𝐴, 𝐵〉))) | |
17 | 13, 15, 16 | syl2anc 583 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁 ∘ − )‘〈𝐴, 𝐵〉) = (𝑁‘( − ‘〈𝐴, 𝐵〉))) |
18 | df-ov 7417 | . . 3 ⊢ (𝐴(𝑁 ∘ − )𝐵) = ((𝑁 ∘ − )‘〈𝐴, 𝐵〉) | |
19 | df-ov 7417 | . . . 4 ⊢ (𝐴 − 𝐵) = ( − ‘〈𝐴, 𝐵〉) | |
20 | 19 | fveq2i 6894 | . . 3 ⊢ (𝑁‘(𝐴 − 𝐵)) = (𝑁‘( − ‘〈𝐴, 𝐵〉)) |
21 | 17, 18, 20 | 3eqtr4g 2792 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝑁 ∘ − )𝐵) = (𝑁‘(𝐴 − 𝐵))) |
22 | ovres 7581 | . . 3 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) | |
23 | 22 | 3adant1 1128 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
24 | 9, 21, 23 | 3eqtr3rd 2776 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 〈cop 4630 × cxp 5670 ↾ cres 5674 ∘ ccom 5676 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 Basecbs 17171 distcds 17233 Grpcgrp 18881 -gcsg 18883 MetSpcms 24211 normcnm 24472 NrmGrpcngp 24473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-map 8838 df-en 8956 df-dom 8957 df-sdom 8958 df-sup 9457 df-inf 9458 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-n0 12495 df-z 12581 df-uz 12845 df-q 12955 df-rp 12999 df-xneg 13116 df-xadd 13117 df-xmul 13118 df-0g 17414 df-topgen 17416 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-grp 18884 df-minusg 18885 df-sbg 18886 df-psmet 21258 df-xmet 21259 df-met 21260 df-bl 21261 df-mopn 21262 df-top 22783 df-topon 22800 df-topsp 22822 df-bases 22836 df-xms 24213 df-ms 24214 df-nm 24478 df-ngp 24479 |
This theorem is referenced by: ngpdsr 24501 ngpds2 24502 ngprcan 24506 ngpinvds 24509 nmmtri 24518 nmrtri 24520 subgngp 24531 nrgdsdi 24569 nrgdsdir 24570 nlmdsdi 24585 nlmdsdir 24586 nrginvrcnlem 24595 nmods 24648 ncvspds 25076 ipcnlem2 25159 minveclem2 25341 minveclem3b 25343 minveclem4 25347 minveclem6 25349 |
Copyright terms: Public domain | W3C validator |