MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipcnlem2 Structured version   Visualization version   GIF version

Theorem ipcnlem2 25165
Description: The inner product operation of a subcomplex pre-Hilbert space is continuous. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
ipcn.v 𝑉 = (Base‘𝑊)
ipcn.h , = (·𝑖𝑊)
ipcn.d 𝐷 = (dist‘𝑊)
ipcn.n 𝑁 = (norm‘𝑊)
ipcn.t 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
ipcn.u 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
ipcn.w (𝜑𝑊 ∈ ℂPreHil)
ipcn.a (𝜑𝐴𝑉)
ipcn.b (𝜑𝐵𝑉)
ipcn.r (𝜑𝑅 ∈ ℝ+)
ipcn.x (𝜑𝑋𝑉)
ipcn.y (𝜑𝑌𝑉)
ipcn.1 (𝜑 → (𝐴𝐷𝑋) < 𝑈)
ipcn.2 (𝜑 → (𝐵𝐷𝑌) < 𝑇)
Assertion
Ref Expression
ipcnlem2 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝑋 , 𝑌))) < 𝑅)

Proof of Theorem ipcnlem2
StepHypRef Expression
1 ipcn.w . . 3 (𝜑𝑊 ∈ ℂPreHil)
2 ipcn.a . . 3 (𝜑𝐴𝑉)
3 ipcn.b . . 3 (𝜑𝐵𝑉)
4 ipcn.v . . . 4 𝑉 = (Base‘𝑊)
5 ipcn.h . . . 4 , = (·𝑖𝑊)
64, 5cphipcl 25112 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉) → (𝐴 , 𝐵) ∈ ℂ)
71, 2, 3, 6syl3anc 1369 . 2 (𝜑 → (𝐴 , 𝐵) ∈ ℂ)
8 ipcn.x . . 3 (𝜑𝑋𝑉)
9 ipcn.y . . 3 (𝜑𝑌𝑉)
104, 5cphipcl 25112 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝑋𝑉𝑌𝑉) → (𝑋 , 𝑌) ∈ ℂ)
111, 8, 9, 10syl3anc 1369 . 2 (𝜑 → (𝑋 , 𝑌) ∈ ℂ)
124, 5cphipcl 25112 . . 3 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝑌𝑉) → (𝐴 , 𝑌) ∈ ℂ)
131, 2, 9, 12syl3anc 1369 . 2 (𝜑 → (𝐴 , 𝑌) ∈ ℂ)
14 ipcn.r . . 3 (𝜑𝑅 ∈ ℝ+)
1514rpred 13042 . 2 (𝜑𝑅 ∈ ℝ)
167, 13subcld 11595 . . . 4 (𝜑 → ((𝐴 , 𝐵) − (𝐴 , 𝑌)) ∈ ℂ)
1716abscld 15409 . . 3 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ∈ ℝ)
18 cphnlm 25093 . . . . . . . . 9 (𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod)
191, 18syl 17 . . . . . . . 8 (𝜑𝑊 ∈ NrmMod)
20 nlmngp 24587 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
2119, 20syl 17 . . . . . . 7 (𝜑𝑊 ∈ NrmGrp)
22 ipcn.n . . . . . . . 8 𝑁 = (norm‘𝑊)
234, 22nmcl 24518 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
2421, 2, 23syl2anc 583 . . . . . 6 (𝜑 → (𝑁𝐴) ∈ ℝ)
254, 22nmge0 24519 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → 0 ≤ (𝑁𝐴))
2621, 2, 25syl2anc 583 . . . . . 6 (𝜑 → 0 ≤ (𝑁𝐴))
2724, 26ge0p1rpd 13072 . . . . 5 (𝜑 → ((𝑁𝐴) + 1) ∈ ℝ+)
2827rpred 13042 . . . 4 (𝜑 → ((𝑁𝐴) + 1) ∈ ℝ)
29 ngpms 24502 . . . . . 6 (𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp)
3021, 29syl 17 . . . . 5 (𝜑𝑊 ∈ MetSp)
31 ipcn.d . . . . . 6 𝐷 = (dist‘𝑊)
324, 31mscl 24360 . . . . 5 ((𝑊 ∈ MetSp ∧ 𝐵𝑉𝑌𝑉) → (𝐵𝐷𝑌) ∈ ℝ)
3330, 3, 9, 32syl3anc 1369 . . . 4 (𝜑 → (𝐵𝐷𝑌) ∈ ℝ)
3428, 33remulcld 11268 . . 3 (𝜑 → (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)) ∈ ℝ)
3515rehalfcld 12483 . . 3 (𝜑 → (𝑅 / 2) ∈ ℝ)
3624, 33remulcld 11268 . . . 4 (𝜑 → ((𝑁𝐴) · (𝐵𝐷𝑌)) ∈ ℝ)
37 eqid 2728 . . . . . . . 8 (-g𝑊) = (-g𝑊)
385, 4, 37cphsubdi 25130 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝐵𝑉𝑌𝑉)) → (𝐴 , (𝐵(-g𝑊)𝑌)) = ((𝐴 , 𝐵) − (𝐴 , 𝑌)))
391, 2, 3, 9, 38syl13anc 1370 . . . . . 6 (𝜑 → (𝐴 , (𝐵(-g𝑊)𝑌)) = ((𝐴 , 𝐵) − (𝐴 , 𝑌)))
4039fveq2d 6895 . . . . 5 (𝜑 → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) = (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))))
41 ngpgrp 24501 . . . . . . . . 9 (𝑊 ∈ NrmGrp → 𝑊 ∈ Grp)
4221, 41syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Grp)
434, 37grpsubcl 18969 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝐵𝑉𝑌𝑉) → (𝐵(-g𝑊)𝑌) ∈ 𝑉)
4442, 3, 9, 43syl3anc 1369 . . . . . . 7 (𝜑 → (𝐵(-g𝑊)𝑌) ∈ 𝑉)
454, 5, 22ipcau 25159 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ∧ (𝐵(-g𝑊)𝑌) ∈ 𝑉) → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) ≤ ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑊)𝑌))))
461, 2, 44, 45syl3anc 1369 . . . . . 6 (𝜑 → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) ≤ ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑊)𝑌))))
4722, 4, 37, 31ngpds 24506 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉𝑌𝑉) → (𝐵𝐷𝑌) = (𝑁‘(𝐵(-g𝑊)𝑌)))
4821, 3, 9, 47syl3anc 1369 . . . . . . 7 (𝜑 → (𝐵𝐷𝑌) = (𝑁‘(𝐵(-g𝑊)𝑌)))
4948oveq2d 7430 . . . . . 6 (𝜑 → ((𝑁𝐴) · (𝐵𝐷𝑌)) = ((𝑁𝐴) · (𝑁‘(𝐵(-g𝑊)𝑌))))
5046, 49breqtrrd 5170 . . . . 5 (𝜑 → (abs‘(𝐴 , (𝐵(-g𝑊)𝑌))) ≤ ((𝑁𝐴) · (𝐵𝐷𝑌)))
5140, 50eqbrtrrd 5166 . . . 4 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ≤ ((𝑁𝐴) · (𝐵𝐷𝑌)))
52 msxms 24353 . . . . . . 7 (𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp)
5330, 52syl 17 . . . . . 6 (𝜑𝑊 ∈ ∞MetSp)
544, 31xmsge0 24362 . . . . . 6 ((𝑊 ∈ ∞MetSp ∧ 𝐵𝑉𝑌𝑉) → 0 ≤ (𝐵𝐷𝑌))
5553, 3, 9, 54syl3anc 1369 . . . . 5 (𝜑 → 0 ≤ (𝐵𝐷𝑌))
5624lep1d 12169 . . . . 5 (𝜑 → (𝑁𝐴) ≤ ((𝑁𝐴) + 1))
5724, 28, 33, 55, 56lemul1ad 12177 . . . 4 (𝜑 → ((𝑁𝐴) · (𝐵𝐷𝑌)) ≤ (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)))
5817, 36, 34, 51, 57letrd 11395 . . 3 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) ≤ (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)))
59 ipcn.2 . . . . 5 (𝜑 → (𝐵𝐷𝑌) < 𝑇)
60 ipcn.t . . . . 5 𝑇 = ((𝑅 / 2) / ((𝑁𝐴) + 1))
6159, 60breqtrdi 5183 . . . 4 (𝜑 → (𝐵𝐷𝑌) < ((𝑅 / 2) / ((𝑁𝐴) + 1)))
6233, 35, 27ltmuldiv2d 13090 . . . 4 (𝜑 → ((((𝑁𝐴) + 1) · (𝐵𝐷𝑌)) < (𝑅 / 2) ↔ (𝐵𝐷𝑌) < ((𝑅 / 2) / ((𝑁𝐴) + 1))))
6361, 62mpbird 257 . . 3 (𝜑 → (((𝑁𝐴) + 1) · (𝐵𝐷𝑌)) < (𝑅 / 2))
6417, 34, 35, 58, 63lelttrd 11396 . 2 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝐴 , 𝑌))) < (𝑅 / 2))
6513, 11subcld 11595 . . . 4 (𝜑 → ((𝐴 , 𝑌) − (𝑋 , 𝑌)) ∈ ℂ)
6665abscld 15409 . . 3 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ∈ ℝ)
674, 31mscl 24360 . . . . 5 ((𝑊 ∈ MetSp ∧ 𝐴𝑉𝑋𝑉) → (𝐴𝐷𝑋) ∈ ℝ)
6830, 2, 8, 67syl3anc 1369 . . . 4 (𝜑 → (𝐴𝐷𝑋) ∈ ℝ)
694, 22nmcl 24518 . . . . . 6 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → (𝑁𝐵) ∈ ℝ)
7021, 3, 69syl2anc 583 . . . . 5 (𝜑 → (𝑁𝐵) ∈ ℝ)
7114rphalfcld 13054 . . . . . . . 8 (𝜑 → (𝑅 / 2) ∈ ℝ+)
7271, 27rpdivcld 13059 . . . . . . 7 (𝜑 → ((𝑅 / 2) / ((𝑁𝐴) + 1)) ∈ ℝ+)
7360, 72eqeltrid 2833 . . . . . 6 (𝜑𝑇 ∈ ℝ+)
7473rpred 13042 . . . . 5 (𝜑𝑇 ∈ ℝ)
7570, 74readdcld 11267 . . . 4 (𝜑 → ((𝑁𝐵) + 𝑇) ∈ ℝ)
7668, 75remulcld 11268 . . 3 (𝜑 → ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) ∈ ℝ)
774, 22nmcl 24518 . . . . . 6 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉) → (𝑁𝑌) ∈ ℝ)
7821, 9, 77syl2anc 583 . . . . 5 (𝜑 → (𝑁𝑌) ∈ ℝ)
7968, 78remulcld 11268 . . . 4 (𝜑 → ((𝐴𝐷𝑋) · (𝑁𝑌)) ∈ ℝ)
805, 4, 37cphsubdir 25129 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝐴𝑉𝑋𝑉𝑌𝑉)) → ((𝐴(-g𝑊)𝑋) , 𝑌) = ((𝐴 , 𝑌) − (𝑋 , 𝑌)))
811, 2, 8, 9, 80syl13anc 1370 . . . . . 6 (𝜑 → ((𝐴(-g𝑊)𝑋) , 𝑌) = ((𝐴 , 𝑌) − (𝑋 , 𝑌)))
8281fveq2d 6895 . . . . 5 (𝜑 → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) = (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))))
834, 37grpsubcl 18969 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝐴𝑉𝑋𝑉) → (𝐴(-g𝑊)𝑋) ∈ 𝑉)
8442, 2, 8, 83syl3anc 1369 . . . . . . 7 (𝜑 → (𝐴(-g𝑊)𝑋) ∈ 𝑉)
854, 5, 22ipcau 25159 . . . . . . 7 ((𝑊 ∈ ℂPreHil ∧ (𝐴(-g𝑊)𝑋) ∈ 𝑉𝑌𝑉) → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) ≤ ((𝑁‘(𝐴(-g𝑊)𝑋)) · (𝑁𝑌)))
861, 84, 9, 85syl3anc 1369 . . . . . 6 (𝜑 → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) ≤ ((𝑁‘(𝐴(-g𝑊)𝑋)) · (𝑁𝑌)))
8722, 4, 37, 31ngpds 24506 . . . . . . . 8 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉𝑋𝑉) → (𝐴𝐷𝑋) = (𝑁‘(𝐴(-g𝑊)𝑋)))
8821, 2, 8, 87syl3anc 1369 . . . . . . 7 (𝜑 → (𝐴𝐷𝑋) = (𝑁‘(𝐴(-g𝑊)𝑋)))
8988oveq1d 7429 . . . . . 6 (𝜑 → ((𝐴𝐷𝑋) · (𝑁𝑌)) = ((𝑁‘(𝐴(-g𝑊)𝑋)) · (𝑁𝑌)))
9086, 89breqtrrd 5170 . . . . 5 (𝜑 → (abs‘((𝐴(-g𝑊)𝑋) , 𝑌)) ≤ ((𝐴𝐷𝑋) · (𝑁𝑌)))
9182, 90eqbrtrrd 5166 . . . 4 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ≤ ((𝐴𝐷𝑋) · (𝑁𝑌)))
924, 31xmsge0 24362 . . . . . 6 ((𝑊 ∈ ∞MetSp ∧ 𝐴𝑉𝑋𝑉) → 0 ≤ (𝐴𝐷𝑋))
9353, 2, 8, 92syl3anc 1369 . . . . 5 (𝜑 → 0 ≤ (𝐴𝐷𝑋))
9478, 70resubcld 11666 . . . . . . 7 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ∈ ℝ)
954, 22, 37nm2dif 24527 . . . . . . . . 9 ((𝑊 ∈ NrmGrp ∧ 𝑌𝑉𝐵𝑉) → ((𝑁𝑌) − (𝑁𝐵)) ≤ (𝑁‘(𝑌(-g𝑊)𝐵)))
9621, 9, 3, 95syl3anc 1369 . . . . . . . 8 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ≤ (𝑁‘(𝑌(-g𝑊)𝐵)))
9722, 4, 37, 31ngpdsr 24507 . . . . . . . . 9 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉𝑌𝑉) → (𝐵𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝐵)))
9821, 3, 9, 97syl3anc 1369 . . . . . . . 8 (𝜑 → (𝐵𝐷𝑌) = (𝑁‘(𝑌(-g𝑊)𝐵)))
9996, 98breqtrrd 5170 . . . . . . 7 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ≤ (𝐵𝐷𝑌))
10033, 74, 59ltled 11386 . . . . . . 7 (𝜑 → (𝐵𝐷𝑌) ≤ 𝑇)
10194, 33, 74, 99, 100letrd 11395 . . . . . 6 (𝜑 → ((𝑁𝑌) − (𝑁𝐵)) ≤ 𝑇)
10278, 70, 74lesubadd2d 11837 . . . . . 6 (𝜑 → (((𝑁𝑌) − (𝑁𝐵)) ≤ 𝑇 ↔ (𝑁𝑌) ≤ ((𝑁𝐵) + 𝑇)))
103101, 102mpbid 231 . . . . 5 (𝜑 → (𝑁𝑌) ≤ ((𝑁𝐵) + 𝑇))
10478, 75, 68, 93, 103lemul2ad 12178 . . . 4 (𝜑 → ((𝐴𝐷𝑋) · (𝑁𝑌)) ≤ ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)))
10566, 79, 76, 91, 104letrd 11395 . . 3 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) ≤ ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)))
106 ipcn.1 . . . . 5 (𝜑 → (𝐴𝐷𝑋) < 𝑈)
107 ipcn.u . . . . 5 𝑈 = ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))
108106, 107breqtrdi 5183 . . . 4 (𝜑 → (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁𝐵) + 𝑇)))
109 0red 11241 . . . . . 6 (𝜑 → 0 ∈ ℝ)
1104, 22nmge0 24519 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝐵𝑉) → 0 ≤ (𝑁𝐵))
11121, 3, 110syl2anc 583 . . . . . 6 (𝜑 → 0 ≤ (𝑁𝐵))
11270, 73ltaddrpd 13075 . . . . . 6 (𝜑 → (𝑁𝐵) < ((𝑁𝐵) + 𝑇))
113109, 70, 75, 111, 112lelttrd 11396 . . . . 5 (𝜑 → 0 < ((𝑁𝐵) + 𝑇))
114 ltmuldiv 12111 . . . . 5 (((𝐴𝐷𝑋) ∈ ℝ ∧ (𝑅 / 2) ∈ ℝ ∧ (((𝑁𝐵) + 𝑇) ∈ ℝ ∧ 0 < ((𝑁𝐵) + 𝑇))) → (((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) < (𝑅 / 2) ↔ (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))))
11568, 35, 75, 113, 114syl112anc 1372 . . . 4 (𝜑 → (((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) < (𝑅 / 2) ↔ (𝐴𝐷𝑋) < ((𝑅 / 2) / ((𝑁𝐵) + 𝑇))))
116108, 115mpbird 257 . . 3 (𝜑 → ((𝐴𝐷𝑋) · ((𝑁𝐵) + 𝑇)) < (𝑅 / 2))
11766, 76, 35, 105, 116lelttrd 11396 . 2 (𝜑 → (abs‘((𝐴 , 𝑌) − (𝑋 , 𝑌))) < (𝑅 / 2))
1187, 11, 13, 15, 64, 117abs3lemd 15434 1 (𝜑 → (abs‘((𝐴 , 𝐵) − (𝑋 , 𝑌))) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099   class class class wbr 5142  cfv 6542  (class class class)co 7414  cc 11130  cr 11131  0cc0 11132  1c1 11133   + caddc 11135   · cmul 11137   < clt 11272  cle 11273  cmin 11468   / cdiv 11895  2c2 12291  +crp 13000  abscabs 15207  Basecbs 17173  ·𝑖cip 17231  distcds 17235  Grpcgrp 18883  -gcsg 18885  ∞MetSpcxms 24216  MetSpcms 24217  normcnm 24478  NrmGrpcngp 24479  NrmModcnlm 24482  ℂPreHilccph 25087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211  ax-mulf 11212
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ico 13356  df-fz 13511  df-seq 13993  df-exp 14053  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-0g 17416  df-topgen 17418  df-xrs 17477  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-mhm 18733  df-grp 18886  df-minusg 18887  df-sbg 18888  df-subg 19071  df-ghm 19161  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-cring 20169  df-oppr 20266  df-dvdsr 20289  df-unit 20290  df-invr 20320  df-dvr 20333  df-rhm 20404  df-subrng 20476  df-subrg 20501  df-drng 20619  df-staf 20718  df-srng 20719  df-lmod 20738  df-lmhm 20900  df-lvec 20981  df-sra 21051  df-rgmod 21052  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-cnfld 21273  df-phl 21551  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-xms 24219  df-ms 24220  df-nm 24484  df-ngp 24485  df-tng 24486  df-nlm 24488  df-clm 24983  df-cph 25089  df-tcph 25090
This theorem is referenced by:  ipcnlem1  25166
  Copyright terms: Public domain W3C validator