Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  krull Structured version   Visualization version   GIF version

Theorem krull 33181
Description: Krull's theorem: Any nonzero ring has at least one maximal ideal. (Contributed by Thierry Arnoux, 10-Apr-2024.)
Assertion
Ref Expression
krull (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
Distinct variable group:   𝑅,𝑚

Proof of Theorem krull
StepHypRef Expression
1 nzrring 20448 . . 3 (𝑅 ∈ NzRing → 𝑅 ∈ Ring)
2 eqid 2727 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
3 eqid 2727 . . . . 5 (0g𝑅) = (0g𝑅)
42, 3lidl0 21119 . . . 4 (𝑅 ∈ Ring → {(0g𝑅)} ∈ (LIdeal‘𝑅))
51, 4syl 17 . . 3 (𝑅 ∈ NzRing → {(0g𝑅)} ∈ (LIdeal‘𝑅))
6 fvex 6904 . . . . . . 7 (0g𝑅) ∈ V
7 hashsng 14354 . . . . . . 7 ((0g𝑅) ∈ V → (♯‘{(0g𝑅)}) = 1)
86, 7ax-mp 5 . . . . . 6 (♯‘{(0g𝑅)}) = 1
9 simpr 484 . . . . . . 7 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → {(0g𝑅)} = (Base‘𝑅))
109fveq2d 6895 . . . . . 6 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → (♯‘{(0g𝑅)}) = (♯‘(Base‘𝑅)))
118, 10eqtr3id 2781 . . . . 5 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 = (♯‘(Base‘𝑅)))
12 1red 11239 . . . . . . 7 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 ∈ ℝ)
13 eqid 2727 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
1413isnzr2hash 20451 . . . . . . . . 9 (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅))))
1514simprbi 496 . . . . . . . 8 (𝑅 ∈ NzRing → 1 < (♯‘(Base‘𝑅)))
1615adantr 480 . . . . . . 7 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 < (♯‘(Base‘𝑅)))
1712, 16ltned 11374 . . . . . 6 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → 1 ≠ (♯‘(Base‘𝑅)))
1817neneqd 2940 . . . . 5 ((𝑅 ∈ NzRing ∧ {(0g𝑅)} = (Base‘𝑅)) → ¬ 1 = (♯‘(Base‘𝑅)))
1911, 18pm2.65da 816 . . . 4 (𝑅 ∈ NzRing → ¬ {(0g𝑅)} = (Base‘𝑅))
2019neqned 2942 . . 3 (𝑅 ∈ NzRing → {(0g𝑅)} ≠ (Base‘𝑅))
2113ssmxidl 33177 . . 3 ((𝑅 ∈ Ring ∧ {(0g𝑅)} ∈ (LIdeal‘𝑅) ∧ {(0g𝑅)} ≠ (Base‘𝑅)) → ∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚)
221, 5, 20, 21syl3anc 1369 . 2 (𝑅 ∈ NzRing → ∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚)
23 df-rex 3066 . . 3 (∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚 ↔ ∃𝑚(𝑚 ∈ (MaxIdeal‘𝑅) ∧ {(0g𝑅)} ⊆ 𝑚))
24 exsimpl 1864 . . 3 (∃𝑚(𝑚 ∈ (MaxIdeal‘𝑅) ∧ {(0g𝑅)} ⊆ 𝑚) → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
2523, 24sylbi 216 . 2 (∃𝑚 ∈ (MaxIdeal‘𝑅){(0g𝑅)} ⊆ 𝑚 → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
2622, 25syl 17 1 (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wex 1774  wcel 2099  wne 2935  wrex 3065  Vcvv 3469  wss 3944  {csn 4624   class class class wbr 5142  cfv 6542  1c1 11133   < clt 11272  chash 14315  Basecbs 17173  0gc0g 17414  Ringcrg 20166  NzRingcnzr 20444  LIdealclidl 21095  MaxIdealcmxidl 33162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-ac2 10480  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-rpss 7722  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9918  df-card 9956  df-ac 10133  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-n0 12497  df-xnn0 12569  df-z 12583  df-uz 12847  df-fz 13511  df-hash 14316  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-0g 17416  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-grp 18886  df-minusg 18887  df-sbg 18888  df-subg 19071  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-nzr 20445  df-subrg 20501  df-lmod 20738  df-lss 20809  df-sra 21051  df-rgmod 21052  df-lidl 21097  df-mxidl 33163
This theorem is referenced by:  mxidlnzrb  33182
  Copyright terms: Public domain W3C validator