![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > krull | Structured version Visualization version GIF version |
Description: Krull's theorem: Any nonzero ring has at least one maximal ideal. (Contributed by Thierry Arnoux, 10-Apr-2024.) |
Ref | Expression |
---|---|
krull | ⊢ (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nzrring 20448 | . . 3 ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | |
2 | eqid 2727 | . . . . 5 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
3 | eqid 2727 | . . . . 5 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | 2, 3 | lidl0 21119 | . . . 4 ⊢ (𝑅 ∈ Ring → {(0g‘𝑅)} ∈ (LIdeal‘𝑅)) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝑅 ∈ NzRing → {(0g‘𝑅)} ∈ (LIdeal‘𝑅)) |
6 | fvex 6904 | . . . . . . 7 ⊢ (0g‘𝑅) ∈ V | |
7 | hashsng 14354 | . . . . . . 7 ⊢ ((0g‘𝑅) ∈ V → (♯‘{(0g‘𝑅)}) = 1) | |
8 | 6, 7 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{(0g‘𝑅)}) = 1 |
9 | simpr 484 | . . . . . . 7 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → {(0g‘𝑅)} = (Base‘𝑅)) | |
10 | 9 | fveq2d 6895 | . . . . . 6 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → (♯‘{(0g‘𝑅)}) = (♯‘(Base‘𝑅))) |
11 | 8, 10 | eqtr3id 2781 | . . . . 5 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → 1 = (♯‘(Base‘𝑅))) |
12 | 1red 11239 | . . . . . . 7 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → 1 ∈ ℝ) | |
13 | eqid 2727 | . . . . . . . . . 10 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
14 | 13 | isnzr2hash 20451 | . . . . . . . . 9 ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘(Base‘𝑅)))) |
15 | 14 | simprbi 496 | . . . . . . . 8 ⊢ (𝑅 ∈ NzRing → 1 < (♯‘(Base‘𝑅))) |
16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → 1 < (♯‘(Base‘𝑅))) |
17 | 12, 16 | ltned 11374 | . . . . . 6 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → 1 ≠ (♯‘(Base‘𝑅))) |
18 | 17 | neneqd 2940 | . . . . 5 ⊢ ((𝑅 ∈ NzRing ∧ {(0g‘𝑅)} = (Base‘𝑅)) → ¬ 1 = (♯‘(Base‘𝑅))) |
19 | 11, 18 | pm2.65da 816 | . . . 4 ⊢ (𝑅 ∈ NzRing → ¬ {(0g‘𝑅)} = (Base‘𝑅)) |
20 | 19 | neqned 2942 | . . 3 ⊢ (𝑅 ∈ NzRing → {(0g‘𝑅)} ≠ (Base‘𝑅)) |
21 | 13 | ssmxidl 33177 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ {(0g‘𝑅)} ∈ (LIdeal‘𝑅) ∧ {(0g‘𝑅)} ≠ (Base‘𝑅)) → ∃𝑚 ∈ (MaxIdeal‘𝑅){(0g‘𝑅)} ⊆ 𝑚) |
22 | 1, 5, 20, 21 | syl3anc 1369 | . 2 ⊢ (𝑅 ∈ NzRing → ∃𝑚 ∈ (MaxIdeal‘𝑅){(0g‘𝑅)} ⊆ 𝑚) |
23 | df-rex 3066 | . . 3 ⊢ (∃𝑚 ∈ (MaxIdeal‘𝑅){(0g‘𝑅)} ⊆ 𝑚 ↔ ∃𝑚(𝑚 ∈ (MaxIdeal‘𝑅) ∧ {(0g‘𝑅)} ⊆ 𝑚)) | |
24 | exsimpl 1864 | . . 3 ⊢ (∃𝑚(𝑚 ∈ (MaxIdeal‘𝑅) ∧ {(0g‘𝑅)} ⊆ 𝑚) → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅)) | |
25 | 23, 24 | sylbi 216 | . 2 ⊢ (∃𝑚 ∈ (MaxIdeal‘𝑅){(0g‘𝑅)} ⊆ 𝑚 → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅)) |
26 | 22, 25 | syl 17 | 1 ⊢ (𝑅 ∈ NzRing → ∃𝑚 𝑚 ∈ (MaxIdeal‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2935 ∃wrex 3065 Vcvv 3469 ⊆ wss 3944 {csn 4624 class class class wbr 5142 ‘cfv 6542 1c1 11133 < clt 11272 ♯chash 14315 Basecbs 17173 0gc0g 17414 Ringcrg 20166 NzRingcnzr 20444 LIdealclidl 21095 MaxIdealcmxidl 33162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-ac2 10480 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-rpss 7722 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9918 df-card 9956 df-ac 10133 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-n0 12497 df-xnn0 12569 df-z 12583 df-uz 12847 df-fz 13511 df-hash 14316 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-0g 17416 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-grp 18886 df-minusg 18887 df-sbg 18888 df-subg 19071 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 df-nzr 20445 df-subrg 20501 df-lmod 20738 df-lss 20809 df-sra 21051 df-rgmod 21052 df-lidl 21097 df-mxidl 33163 |
This theorem is referenced by: mxidlnzrb 33182 |
Copyright terms: Public domain | W3C validator |