![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exsimpl | Structured version Visualization version GIF version |
Description: Simplification of an existentially quantified conjunction. (Contributed by Rodolfo Medina, 25-Sep-2010.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
exsimpl | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
2 | 1 | eximi 1830 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 |
This theorem is referenced by: 19.40 1882 moexexlem 2617 elissetv 2809 clelab 2874 elex 3488 sbc5ALT 3803 r19.2zb 4491 dmcoss 5968 suppimacnvss 8171 unblem2 9314 kmlem8 10174 isssc 17796 krull 33181 bnj1143 34411 bnj1371 34650 bnj1374 34652 atex 38868 rtrclex 43019 clcnvlem 43025 pm10.55 43778 |
Copyright terms: Public domain | W3C validator |