MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppimacnvss Structured version   Visualization version   GIF version

Theorem suppimacnvss 8172
Description: The support of functions "defined" by inverse images is a subset of the support defined by df-supp 8161. (Contributed by AV, 7-Apr-2019.)
Assertion
Ref Expression
suppimacnvss ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍))

Proof of Theorem suppimacnvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exsimpl 1864 . . . . 5 (∃𝑦(𝑥𝑅𝑦𝑦𝑍) → ∃𝑦 𝑥𝑅𝑦)
2 pm5.1 823 . . . . . 6 ((𝑥𝑅𝑦𝑦𝑍) → (𝑥𝑅𝑦𝑦𝑍))
32eximi 1830 . . . . 5 (∃𝑦(𝑥𝑅𝑦𝑦𝑍) → ∃𝑦(𝑥𝑅𝑦𝑦𝑍))
41, 3jca 511 . . . 4 (∃𝑦(𝑥𝑅𝑦𝑦𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)))
54a1i 11 . . 3 ((𝑅𝑉𝑍𝑊) → (∃𝑦(𝑥𝑅𝑦𝑦𝑍) → (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))))
65ss2abdv 4057 . 2 ((𝑅𝑉𝑍𝑊) → {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)} ⊆ {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
7 cnvimadfsn 8171 . . 3 (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)}
87a1i 11 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) = {𝑥 ∣ ∃𝑦(𝑥𝑅𝑦𝑦𝑍)})
9 suppvalbr 8164 . 2 ((𝑅𝑉𝑍𝑊) → (𝑅 supp 𝑍) = {𝑥 ∣ (∃𝑦 𝑥𝑅𝑦 ∧ ∃𝑦(𝑥𝑅𝑦𝑦𝑍))})
106, 8, 93sstr4d 4026 1 ((𝑅𝑉𝑍𝑊) → (𝑅 “ (V ∖ {𝑍})) ⊆ (𝑅 supp 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wex 1774  wcel 2099  {cab 2705  wne 2936  Vcvv 3470  cdif 3942  wss 3945  {csn 4625   class class class wbr 5143  ccnv 5672  cima 5676  (class class class)co 7415   supp csupp 8160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-supp 8161
This theorem is referenced by:  suppimacnv  8173  fsuppinisegfi  32462
  Copyright terms: Public domain W3C validator