![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > isch2 | Structured version Visualization version GIF version |
Description: Closed subspace 𝐻 of a Hilbert space. Definition of [Beran] p. 107. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isch2 | ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isch 31025 | . 2 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻)) | |
2 | alcom 2149 | . . . . 5 ⊢ (∀𝑓∀𝑥((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑥∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) | |
3 | 19.23v 1938 | . . . . . . . 8 ⊢ (∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) | |
4 | vex 3474 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
5 | 4 | elima2 6063 | . . . . . . . . 9 ⊢ (𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥)) |
6 | 5 | imbi1i 349 | . . . . . . . 8 ⊢ ((𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) → 𝑥 ∈ 𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻)) |
7 | 3, 6 | bitr4i 278 | . . . . . . 7 ⊢ (∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ (𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) → 𝑥 ∈ 𝐻)) |
8 | 7 | albii 1814 | . . . . . 6 ⊢ (∀𝑥∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) → 𝑥 ∈ 𝐻)) |
9 | dfss2 3965 | . . . . . 6 ⊢ (( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻 ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) → 𝑥 ∈ 𝐻)) | |
10 | 8, 9 | bitr4i 278 | . . . . 5 ⊢ (∀𝑥∀𝑓((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻) |
11 | 2, 10 | bitri 275 | . . . 4 ⊢ (∀𝑓∀𝑥((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻) |
12 | nnex 12242 | . . . . . . . 8 ⊢ ℕ ∈ V | |
13 | elmapg 8851 | . . . . . . . 8 ⊢ ((𝐻 ∈ Sℋ ∧ ℕ ∈ V) → (𝑓 ∈ (𝐻 ↑m ℕ) ↔ 𝑓:ℕ⟶𝐻)) | |
14 | 12, 13 | mpan2 690 | . . . . . . 7 ⊢ (𝐻 ∈ Sℋ → (𝑓 ∈ (𝐻 ↑m ℕ) ↔ 𝑓:ℕ⟶𝐻)) |
15 | 14 | anbi1d 630 | . . . . . 6 ⊢ (𝐻 ∈ Sℋ → ((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) ↔ (𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥))) |
16 | 15 | imbi1d 341 | . . . . 5 ⊢ (𝐻 ∈ Sℋ → (((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
17 | 16 | 2albidv 1919 | . . . 4 ⊢ (𝐻 ∈ Sℋ → (∀𝑓∀𝑥((𝑓 ∈ (𝐻 ↑m ℕ) ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻) ↔ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
18 | 11, 17 | bitr3id 285 | . . 3 ⊢ (𝐻 ∈ Sℋ → (( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻 ↔ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
19 | 18 | pm5.32i 574 | . 2 ⊢ ((𝐻 ∈ Sℋ ∧ ( ⇝𝑣 “ (𝐻 ↑m ℕ)) ⊆ 𝐻) ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
20 | 1, 19 | bitri 275 | 1 ⊢ (𝐻 ∈ Cℋ ↔ (𝐻 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶𝐻 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 ∃wex 1774 ∈ wcel 2099 Vcvv 3470 ⊆ wss 3945 class class class wbr 5142 “ cima 5675 ⟶wf 6538 (class class class)co 7414 ↑m cmap 8838 ℕcn 12236 ⇝𝑣 chli 30730 Sℋ csh 30731 Cℋ cch 30732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-1cn 11190 ax-addcl 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-map 8840 df-nn 12237 df-ch 31024 |
This theorem is referenced by: chlimi 31037 isch3 31044 helch 31046 hsn0elch 31051 chintcli 31134 chscl 31444 nlelchi 31864 hmopidmchi 31954 |
Copyright terms: Public domain | W3C validator |