HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch2 Structured version   Visualization version   GIF version

Theorem isch2 31026
Description: Closed subspace 𝐻 of a Hilbert space. Definition of [Beran] p. 107. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isch2 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
Distinct variable group:   𝑥,𝑓,𝐻

Proof of Theorem isch2
StepHypRef Expression
1 isch 31025 . 2 (𝐻C ↔ (𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻))
2 alcom 2149 . . . . 5 (∀𝑓𝑥((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
3 19.23v 1938 . . . . . . . 8 (∀𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
4 vex 3474 . . . . . . . . . 10 𝑥 ∈ V
54elima2 6063 . . . . . . . . 9 (𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) ↔ ∃𝑓(𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥))
65imbi1i 349 . . . . . . . 8 ((𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) → 𝑥𝐻) ↔ (∃𝑓(𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻))
73, 6bitr4i 278 . . . . . . 7 (∀𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ (𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) → 𝑥𝐻))
87albii 1814 . . . . . 6 (∀𝑥𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) → 𝑥𝐻))
9 dfss2 3965 . . . . . 6 (( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻 ↔ ∀𝑥(𝑥 ∈ ( ⇝𝑣 “ (𝐻m ℕ)) → 𝑥𝐻))
108, 9bitr4i 278 . . . . 5 (∀𝑥𝑓((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻)
112, 10bitri 275 . . . 4 (∀𝑓𝑥((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻)
12 nnex 12242 . . . . . . . 8 ℕ ∈ V
13 elmapg 8851 . . . . . . . 8 ((𝐻S ∧ ℕ ∈ V) → (𝑓 ∈ (𝐻m ℕ) ↔ 𝑓:ℕ⟶𝐻))
1412, 13mpan2 690 . . . . . . 7 (𝐻S → (𝑓 ∈ (𝐻m ℕ) ↔ 𝑓:ℕ⟶𝐻))
1514anbi1d 630 . . . . . 6 (𝐻S → ((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) ↔ (𝑓:ℕ⟶𝐻𝑓𝑣 𝑥)))
1615imbi1d 341 . . . . 5 (𝐻S → (((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
17162albidv 1919 . . . 4 (𝐻S → (∀𝑓𝑥((𝑓 ∈ (𝐻m ℕ) ∧ 𝑓𝑣 𝑥) → 𝑥𝐻) ↔ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
1811, 17bitr3id 285 . . 3 (𝐻S → (( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻 ↔ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
1918pm5.32i 574 . 2 ((𝐻S ∧ ( ⇝𝑣 “ (𝐻m ℕ)) ⊆ 𝐻) ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
201, 19bitri 275 1 (𝐻C ↔ (𝐻S ∧ ∀𝑓𝑥((𝑓:ℕ⟶𝐻𝑓𝑣 𝑥) → 𝑥𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532  wex 1774  wcel 2099  Vcvv 3470  wss 3945   class class class wbr 5142  cima 5675  wf 6538  (class class class)co 7414  m cmap 8838  cn 12236  𝑣 chli 30730   S csh 30731   C cch 30732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-1cn 11190  ax-addcl 11192
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-map 8840  df-nn 12237  df-ch 31024
This theorem is referenced by:  chlimi  31037  isch3  31044  helch  31046  hsn0elch  31051  chintcli  31134  chscl  31444  nlelchi  31864  hmopidmchi  31954
  Copyright terms: Public domain W3C validator