![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfss2 | Structured version Visualization version GIF version |
Description: Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.) Avoid ax-10 2130, ax-11 2147, ax-12 2164. (Revised by SN, 16-May-2024.) |
Ref | Expression |
---|---|
dfss2 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2720 | . 2 ⊢ (𝐴 = (𝐴 ∩ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) | |
2 | dfss 3962 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
3 | pm4.71 557 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | |
4 | elin 3960 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
5 | 4 | bibi2i 337 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) |
6 | 3, 5 | bitr4i 278 | . . 3 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
7 | 6 | albii 1814 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
8 | 1, 2, 7 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 = wceq 1534 ∈ wcel 2099 ∩ cin 3943 ⊆ wss 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-in 3951 df-ss 3961 |
This theorem is referenced by: dfss3 3966 dfss6 3967 dfss2f 3968 ssel 3971 sselOLD 3972 ssriv 3982 ssrdv 3984 sstr2 3985 eqss 3993 nss 4042 rabss2 4071 ssconb 4133 ssequn1 4176 unss 4180 ssin 4226 ssdif0 4359 difin0ss 4364 inssdif0 4365 reldisj 4447 reldisjOLD 4448 ssundif 4483 sbcssg 4519 pwss 4621 snssb 4782 snssgOLD 4784 pwpw0 4812 ssuni 4930 unissb 4937 unissbOLD 4938 iunssf 5041 iunss 5042 dftr2 5261 axpweq 5344 axpow2 5361 ssextss 5449 ssrel 5778 ssrelOLD 5779 ssrel2 5781 ssrelrel 5792 reliun 5812 relop 5847 idrefALT 6111 funimass4 6957 dfom2 7866 inf2 9638 grothprim 10849 psslinpr 11046 ltaddpr 11049 isprm2 16644 vdwmc2 16939 acsmapd 18537 ismhp3 22054 dfconn2 23310 iskgen3 23440 metcld 25221 metcld2 25222 isch2 31020 pjnormssi 31965 ssiun3 32334 ssrelf 32388 bnj1361 34395 bnj978 34516 fineqvpow 34652 dffr5 35284 brsset 35421 sscoid 35445 relowlpssretop 36779 fvineqsneq 36827 unielss 42569 rp-fakeinunass 42868 rababg 42927 dfhe3 43128 snhesn 43139 dffrege76 43292 ntrneiiso 43444 ntrneik2 43445 ntrneix2 43446 ntrneikb 43447 expanduniss 43653 ismnuprim 43654 ismnushort 43661 onfrALTlem2 43908 trsspwALT 44180 trsspwALT2 44181 snssiALTVD 44189 snssiALT 44190 sstrALT2VD 44196 sstrALT2 44197 sbcssgVD 44245 onfrALTlem2VD 44251 sspwimp 44280 sspwimpVD 44281 sspwimpcf 44282 sspwimpcfVD 44283 sspwimpALT 44287 unisnALT 44288 icccncfext 45198 |
Copyright terms: Public domain | W3C validator |