MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldisj Structured version   Visualization version   GIF version

Theorem reldisj 4447
Description: Two ways of saying that two classes are disjoint, using the complement of 𝐵 relative to a universe 𝐶. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Avoid ax-12 2164. (Revised by Gino Giotto, 28-Jun-2024.)
Assertion
Ref Expression
reldisj (𝐴𝐶 → ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶𝐵)))

Proof of Theorem reldisj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfss2 3964 . . . 4 (𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
2 eleq1w 2811 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
3 eleq1w 2811 . . . . . . 7 (𝑥 = 𝑦 → (𝑥𝐶𝑦𝐶))
42, 3imbi12d 344 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝐴𝑥𝐶) ↔ (𝑦𝐴𝑦𝐶)))
54spw 2030 . . . . 5 (∀𝑥(𝑥𝐴𝑥𝐶) → (𝑥𝐴𝑥𝐶))
6 pm5.44 542 . . . . . 6 ((𝑥𝐴𝑥𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴 → (𝑥𝐶 ∧ ¬ 𝑥𝐵))))
7 eldif 3954 . . . . . . 7 (𝑥 ∈ (𝐶𝐵) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐵))
87imbi2i 336 . . . . . 6 ((𝑥𝐴𝑥 ∈ (𝐶𝐵)) ↔ (𝑥𝐴 → (𝑥𝐶 ∧ ¬ 𝑥𝐵)))
96, 8bitr4di 289 . . . . 5 ((𝑥𝐴𝑥𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐶𝐵))))
105, 9syl 17 . . . 4 (∀𝑥(𝑥𝐴𝑥𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐶𝐵))))
111, 10sylbi 216 . . 3 (𝐴𝐶 → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐶𝐵))))
1211albidv 1916 . 2 (𝐴𝐶 → (∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐶𝐵))))
13 disj1 4446 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
14 dfss2 3964 . 2 (𝐴 ⊆ (𝐶𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐶𝐵)))
1512, 13, 143bitr4g 314 1 (𝐴𝐶 → ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1532   = wceq 1534  wcel 2099  cdif 3941  cin 3943  wss 3944  c0 4318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ral 3057  df-v 3471  df-dif 3947  df-in 3951  df-ss 3961  df-nul 4319
This theorem is referenced by:  disj2  4453  ssdifsn  4787  oacomf1olem  8578  domdifsn  9070  elfiun  9445  cantnfp1lem3  9695  ssxr  11305  structcnvcnv  17113  fidomndrng  21248  elcls  22964  ist1-2  23238  nrmsep2  23247  nrmsep  23248  isnrm3  23250  isreg2  23268  hauscmplem  23297  connsub  23312  iunconnlem  23318  llycmpkgen2  23441  hausdiag  23536  trfil3  23779  isufil2  23799  filufint  23811  blcld  24401  i1fima2  25595  i1fd  25597  nbgrssvwo2  29162  pliguhgr  30283  symgcom2  32785  inunissunidif  36790  poimirlem15  37043  itg2addnclem2  37080  ntrk0kbimka  43392  ntrneicls11  43443  gneispace  43487  opndisj  47844  seposep  47867
  Copyright terms: Public domain W3C validator