![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > chintcli | Structured version Visualization version GIF version |
Description: The intersection of a nonempty set of closed subspaces is a closed subspace. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
chintcl.1 | ⊢ (𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) |
Ref | Expression |
---|---|
chintcli | ⊢ ∩ 𝐴 ∈ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chintcl.1 | . . . . . 6 ⊢ (𝐴 ⊆ Cℋ ∧ 𝐴 ≠ ∅) | |
2 | 1 | simpli 483 | . . . . 5 ⊢ 𝐴 ⊆ Cℋ |
3 | chsssh 31034 | . . . . 5 ⊢ Cℋ ⊆ Sℋ | |
4 | 2, 3 | sstri 3989 | . . . 4 ⊢ 𝐴 ⊆ Sℋ |
5 | 1 | simpri 485 | . . . 4 ⊢ 𝐴 ≠ ∅ |
6 | 4, 5 | pm3.2i 470 | . . 3 ⊢ (𝐴 ⊆ Sℋ ∧ 𝐴 ≠ ∅) |
7 | 6 | shintcli 31138 | . 2 ⊢ ∩ 𝐴 ∈ Sℋ |
8 | 2 | sseli 3976 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ Cℋ ) |
9 | vex 3475 | . . . . . . . . . . 11 ⊢ 𝑥 ∈ V | |
10 | 9 | chlimi 31043 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Cℋ ∧ 𝑓:ℕ⟶𝑦 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ 𝑦) |
11 | 10 | 3exp 1117 | . . . . . . . . 9 ⊢ (𝑦 ∈ Cℋ → (𝑓:ℕ⟶𝑦 → (𝑓 ⇝𝑣 𝑥 → 𝑥 ∈ 𝑦))) |
12 | 11 | com3r 87 | . . . . . . . 8 ⊢ (𝑓 ⇝𝑣 𝑥 → (𝑦 ∈ Cℋ → (𝑓:ℕ⟶𝑦 → 𝑥 ∈ 𝑦))) |
13 | 8, 12 | syl5 34 | . . . . . . 7 ⊢ (𝑓 ⇝𝑣 𝑥 → (𝑦 ∈ 𝐴 → (𝑓:ℕ⟶𝑦 → 𝑥 ∈ 𝑦))) |
14 | 13 | imp 406 | . . . . . 6 ⊢ ((𝑓 ⇝𝑣 𝑥 ∧ 𝑦 ∈ 𝐴) → (𝑓:ℕ⟶𝑦 → 𝑥 ∈ 𝑦)) |
15 | 14 | ralimdva 3164 | . . . . 5 ⊢ (𝑓 ⇝𝑣 𝑥 → (∀𝑦 ∈ 𝐴 𝑓:ℕ⟶𝑦 → ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦)) |
16 | 5 | fint 6776 | . . . . 5 ⊢ (𝑓:ℕ⟶∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 𝑓:ℕ⟶𝑦) |
17 | 9 | elint2 4956 | . . . . 5 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
18 | 15, 16, 17 | 3imtr4g 296 | . . . 4 ⊢ (𝑓 ⇝𝑣 𝑥 → (𝑓:ℕ⟶∩ 𝐴 → 𝑥 ∈ ∩ 𝐴)) |
19 | 18 | impcom 407 | . . 3 ⊢ ((𝑓:ℕ⟶∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ∩ 𝐴) |
20 | 19 | gen2 1791 | . 2 ⊢ ∀𝑓∀𝑥((𝑓:ℕ⟶∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ∩ 𝐴) |
21 | isch2 31032 | . 2 ⊢ (∩ 𝐴 ∈ Cℋ ↔ (∩ 𝐴 ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶∩ 𝐴 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ∩ 𝐴))) | |
22 | 7, 20, 21 | mpbir2an 710 | 1 ⊢ ∩ 𝐴 ∈ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1532 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ⊆ wss 3947 ∅c0 4323 ∩ cint 4949 class class class wbr 5148 ⟶wf 6544 ℕcn 12242 ⇝𝑣 chli 30736 Sℋ csh 30737 Cℋ cch 30738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-1cn 11196 ax-addcl 11198 ax-hilex 30808 ax-hfvadd 30809 ax-hv0cl 30812 ax-hfvmul 30814 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-map 8846 df-nn 12243 df-sh 31016 df-ch 31030 |
This theorem is referenced by: chintcl 31141 chincli 31269 |
Copyright terms: Public domain | W3C validator |