MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistpsx Structured version   Visualization version   GIF version

Theorem indistpsx 22926
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using explicit structure component references. Compare with indistps 22927 and indistps2 22928. The advantage of this version is that the actual function for the structure is evident, and df-ndx 17163 is not needed, nor any other special definition outside of basic set theory. The disadvantage is that if the indices of the component definitions df-base 17181 and df-tset 17252 are changed in the future, this theorem will also have to be changed. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use; use indistps 22927 instead. (New usage is discouraged.) (Contributed by FL, 19-Jul-2006.)
Hypotheses
Ref Expression
indistpsx.a 𝐴 ∈ V
indistpsx.k 𝐾 = {⟨1, 𝐴⟩, ⟨9, {∅, 𝐴}⟩}
Assertion
Ref Expression
indistpsx 𝐾 ∈ TopSp

Proof of Theorem indistpsx
StepHypRef Expression
1 indistpsx.k . . 3 𝐾 = {⟨1, 𝐴⟩, ⟨9, {∅, 𝐴}⟩}
2 basendx 17189 . . . . 5 (Base‘ndx) = 1
32opeq1i 4877 . . . 4 ⟨(Base‘ndx), 𝐴⟩ = ⟨1, 𝐴
4 tsetndx 17333 . . . . 5 (TopSet‘ndx) = 9
54opeq1i 4877 . . . 4 ⟨(TopSet‘ndx), {∅, 𝐴}⟩ = ⟨9, {∅, 𝐴}⟩
63, 5preq12i 4743 . . 3 {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), {∅, 𝐴}⟩} = {⟨1, 𝐴⟩, ⟨9, {∅, 𝐴}⟩}
71, 6eqtr4i 2759 . 2 𝐾 = {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), {∅, 𝐴}⟩}
8 indistpsx.a . . . 4 𝐴 ∈ V
9 indistopon 22917 . . . 4 (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴))
108, 9ax-mp 5 . . 3 {∅, 𝐴} ∈ (TopOn‘𝐴)
1110toponunii 22831 . 2 𝐴 = {∅, 𝐴}
12 indistop 22918 . 2 {∅, 𝐴} ∈ Top
137, 11, 12eltpsi 22860 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  Vcvv 3471  c0 4323  {cpr 4631  cop 4635  cfv 6548  1c1 11140  9c9 12305  ndxcnx 17162  Basecbs 17180  TopSetcts 17239  TopOnctopon 22825  TopSpctps 22847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-z 12590  df-uz 12854  df-fz 13518  df-struct 17116  df-slot 17151  df-ndx 17163  df-base 17181  df-tset 17252  df-rest 17404  df-topn 17405  df-top 22809  df-topon 22826  df-topsp 22848
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator