![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indistop | Structured version Visualization version GIF version |
Description: The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 16-Jul-2006.) (Revised by Stefan Allan, 6-Nov-2008.) (Revised by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
indistop | ⊢ {∅, 𝐴} ∈ Top |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indislem 22921 | . 2 ⊢ {∅, ( I ‘𝐴)} = {∅, 𝐴} | |
2 | fvex 6913 | . . . 4 ⊢ ( I ‘𝐴) ∈ V | |
3 | indistopon 22922 | . . . 4 ⊢ (( I ‘𝐴) ∈ V → {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴))) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴)) |
5 | 4 | topontopi 22835 | . 2 ⊢ {∅, ( I ‘𝐴)} ∈ Top |
6 | 1, 5 | eqeltrri 2825 | 1 ⊢ {∅, 𝐴} ∈ Top |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 Vcvv 3471 ∅c0 4324 {cpr 4632 I cid 5577 ‘cfv 6551 Topctop 22813 TopOnctopon 22830 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-iota 6503 df-fun 6553 df-fv 6559 df-top 22814 df-topon 22831 |
This theorem is referenced by: indistpsx 22931 indistps 22932 indistps2 22933 indiscld 23013 indisconn 23340 txindis 23556 indispconn 34849 onpsstopbas 35919 |
Copyright terms: Public domain | W3C validator |