MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistop Structured version   Visualization version   GIF version

Theorem indistop 22923
Description: The indiscrete topology on a set 𝐴. Part of Example 2 in [Munkres] p. 77. (Contributed by FL, 16-Jul-2006.) (Revised by Stefan Allan, 6-Nov-2008.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
indistop {∅, 𝐴} ∈ Top

Proof of Theorem indistop
StepHypRef Expression
1 indislem 22921 . 2 {∅, ( I ‘𝐴)} = {∅, 𝐴}
2 fvex 6913 . . . 4 ( I ‘𝐴) ∈ V
3 indistopon 22922 . . . 4 (( I ‘𝐴) ∈ V → {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴)))
42, 3ax-mp 5 . . 3 {∅, ( I ‘𝐴)} ∈ (TopOn‘( I ‘𝐴))
54topontopi 22835 . 2 {∅, ( I ‘𝐴)} ∈ Top
61, 5eqeltrri 2825 1 {∅, 𝐴} ∈ Top
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  Vcvv 3471  c0 4324  {cpr 4632   I cid 5577  cfv 6551  Topctop 22813  TopOnctopon 22830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-iota 6503  df-fun 6553  df-fv 6559  df-top 22814  df-topon 22831
This theorem is referenced by:  indistpsx  22931  indistps  22932  indistps2  22933  indiscld  23013  indisconn  23340  txindis  23556  indispconn  34849  onpsstopbas  35919
  Copyright terms: Public domain W3C validator