![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > basendx | Structured version Visualization version GIF version |
Description: Index value of the base set extractor. (Contributed by Mario Carneiro, 2-Aug-2013.) Use of this theorem is discouraged since the particular value 1 for the index is an implementation detail, see section header comment mmtheorems.html#cnx for more information. (New usage is discouraged.) |
Ref | Expression |
---|---|
basendx | ⊢ (Base‘ndx) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-base 17174 | . 2 ⊢ Base = Slot 1 | |
2 | 1nn 12247 | . 2 ⊢ 1 ∈ ℕ | |
3 | 1, 2 | ndxarg 17158 | 1 ⊢ (Base‘ndx) = 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ‘cfv 6542 1c1 11133 ndxcnx 17155 Basecbs 17173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-1cn 11190 ax-addcl 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12237 df-slot 17144 df-ndx 17156 df-base 17174 |
This theorem is referenced by: basendxnn 17183 1strstr 17188 2strstr 17195 2strstr1OLD 17199 resslemOLD 17216 basendxltplusgndx 17255 grpbasex 17265 grpplusgx 17266 basendxnmulrndx 17269 rngstr 17272 starvndxnbasendx 17278 scandxnbasendx 17290 vscandxnbasendx 17295 lmodstr 17299 ipndxnbasendx 17306 basendxlttsetndx 17329 topgrpstr 17335 basendxltplendx 17343 otpsstr 17350 basendxnocndx 17357 basendxltdsndx 17362 basendxltunifndx 17372 slotsbhcdif 17389 oppcbasOLD 17693 rescbasOLD 17806 rescabsOLD 17812 catstr 17941 odubasOLD 18277 ipostr 18514 mgpressOLD 20083 cnfldfunALTOLDOLD 21301 thlbasOLD 21622 indistpsx 22906 tuslemOLD 24165 setsmsbasOLD 24375 slotsinbpsd 28238 slotslnbpsd 28239 trkgstr 28241 eengstr 28784 basendxltedgfndx 28799 |
Copyright terms: Public domain | W3C validator |