MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ig1pval3 Structured version   Visualization version   GIF version

Theorem ig1pval3 26099
Description: Characterizing properties of the monic generator of a nonzero ideal of polynomials. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Revised by AV, 25-Sep-2020.)
Hypotheses
Ref Expression
ig1pval.p 𝑃 = (Poly1𝑅)
ig1pval.g 𝐺 = (idlGen1p𝑅)
ig1pval3.z 0 = (0g𝑃)
ig1pval3.u 𝑈 = (LIdeal‘𝑃)
ig1pval3.d 𝐷 = ( deg1𝑅)
ig1pval3.m 𝑀 = (Monic1p𝑅)
Assertion
Ref Expression
ig1pval3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))

Proof of Theorem ig1pval3
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 ig1pval.p . . . . . 6 𝑃 = (Poly1𝑅)
2 ig1pval.g . . . . . 6 𝐺 = (idlGen1p𝑅)
3 ig1pval3.z . . . . . 6 0 = (0g𝑃)
4 ig1pval3.u . . . . . 6 𝑈 = (LIdeal‘𝑃)
5 ig1pval3.d . . . . . 6 𝐷 = ( deg1𝑅)
6 ig1pval3.m . . . . . 6 𝑀 = (Monic1p𝑅)
71, 2, 3, 4, 5, 6ig1pval 26097 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈) → (𝐺𝐼) = if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))))
873adant3 1130 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐺𝐼) = if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))))
9 simp3 1136 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 })
109neneqd 2940 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ¬ 𝐼 = { 0 })
1110iffalsed 4535 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → if(𝐼 = { 0 }, 0 , (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))) = (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
128, 11eqtrd 2767 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐺𝐼) = (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
131, 4, 3, 6, 5ig1peu 26096 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ))
14 riotacl2 7387 . . . 4 (∃!𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) → (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ∈ {𝑔 ∈ (𝐼𝑀) ∣ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )})
1513, 14syl 17 . . 3 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝑔 ∈ (𝐼𝑀)(𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ∈ {𝑔 ∈ (𝐼𝑀) ∣ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )})
1612, 15eqeltrd 2828 . 2 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → (𝐺𝐼) ∈ {𝑔 ∈ (𝐼𝑀) ∣ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )})
17 elin 3960 . . . 4 ((𝐺𝐼) ∈ (𝐼𝑀) ↔ ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀))
1817anbi1i 623 . . 3 (((𝐺𝐼) ∈ (𝐼𝑀) ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ↔ (((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀) ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
19 fveqeq2 6900 . . . 4 (𝑔 = (𝐺𝐼) → ((𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < ) ↔ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
2019elrab 3680 . . 3 ((𝐺𝐼) ∈ {𝑔 ∈ (𝐼𝑀) ∣ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )} ↔ ((𝐺𝐼) ∈ (𝐼𝑀) ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
21 df-3an 1087 . . 3 (((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )) ↔ (((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀) ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
2218, 20, 213bitr4i 303 . 2 ((𝐺𝐼) ∈ {𝑔 ∈ (𝐼𝑀) ∣ (𝐷𝑔) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )} ↔ ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
2316, 22sylib 217 1 ((𝑅 ∈ DivRing ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ((𝐺𝐼) ∈ 𝐼 ∧ (𝐺𝐼) ∈ 𝑀 ∧ (𝐷‘(𝐺𝐼)) = inf((𝐷 “ (𝐼 ∖ { 0 })), ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935  ∃!wreu 3369  {crab 3427  cdif 3941  cin 3943  ifcif 4524  {csn 4624  cima 5675  cfv 6542  crio 7369  infcinf 9456  cr 11129   < clt 11270  0gc0g 17412  DivRingcdr 20613  LIdealclidl 21091  Poly1cpl1 22083   deg1 cdg1 25974  Monic1pcmn1 26048  idlGen1pcig1p 26052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208  ax-addf 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-inf 9458  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-fzo 13652  df-seq 13991  df-hash 14314  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-starv 17239  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-unif 17247  df-hom 17248  df-cco 17249  df-0g 17414  df-gsum 17415  df-prds 17420  df-pws 17422  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-submnd 18732  df-grp 18884  df-minusg 18885  df-sbg 18886  df-mulg 19015  df-subg 19069  df-ghm 19159  df-cntz 19259  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-ring 20166  df-cring 20167  df-oppr 20262  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-subrng 20472  df-subrg 20497  df-drng 20615  df-lmod 20734  df-lss 20805  df-sra 21047  df-rgmod 21048  df-lidl 21093  df-rlreg 21219  df-cnfld 21267  df-ascl 21776  df-psr 21829  df-mvr 21830  df-mpl 21831  df-opsr 21833  df-psr1 22086  df-vr1 22087  df-ply1 22088  df-coe1 22089  df-mdeg 25975  df-deg1 25976  df-mon1 26053  df-uc1p 26054  df-ig1p 26057
This theorem is referenced by:  ig1pcl  26100  ig1pdvds  26101  ig1pmindeg  33204  minplym1p  33319
  Copyright terms: Public domain W3C validator