![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hash0 | Structured version Visualization version GIF version |
Description: The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.) |
Ref | Expression |
---|---|
hash0 | ⊢ (♯‘∅) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . 2 ⊢ ∅ = ∅ | |
2 | 0ex 5307 | . . 3 ⊢ ∅ ∈ V | |
3 | hasheq0 14355 | . . 3 ⊢ (∅ ∈ V → ((♯‘∅) = 0 ↔ ∅ = ∅)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ((♯‘∅) = 0 ↔ ∅ = ∅) |
5 | 1, 4 | mpbir 230 | 1 ⊢ (♯‘∅) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∅c0 4323 ‘cfv 6548 0cc0 11139 ♯chash 14322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-n0 12504 df-z 12590 df-uz 12854 df-fz 13518 df-hash 14323 |
This theorem is referenced by: hashrabrsn 14364 hashrabsn01 14365 hashrabsn1 14366 hashge0 14379 elprchashprn2 14388 hash1 14396 hashsn01 14408 hashgt12el 14414 hashgt12el2 14415 hashfzo 14421 hashfzp1 14423 hashxplem 14425 hashmap 14427 hashbc 14445 hashf1lem2 14450 hashf1 14451 hash2pwpr 14470 wrdnfi 14531 lsw0g 14549 ccatlid 14569 ccatrid 14570 rev0 14747 repswsymballbi 14763 fsumconst 15769 incexclem 15815 incexc 15816 fprodconst 15955 sumodd 16365 hashgcdeq 16758 prmreclem4 16888 prmreclem5 16889 0hashbc 16976 ramz2 16993 cshws0 17071 psgnunilem2 19450 psgnunilem4 19452 psgn0fv0 19466 psgnsn 19475 psgnprfval1 19477 efginvrel2 19682 efgredleme 19698 efgcpbllemb 19710 frgpnabllem1 19828 gsumconst 19889 ltbwe 21982 fta1g 26117 fta1 26256 birthdaylem3 26898 ppi1 27109 musum 27136 rpvmasum 27472 umgrislfupgrlem 28948 lfuhgr1v0e 29080 vtxdg0e 29301 vtxdlfgrval 29312 rusgr1vtxlem 29414 wspn0 29748 rusgrnumwwlkl1 29792 rusgr0edg 29797 clwwlknonel 29918 clwwlknon1le1 29924 0ewlk 29937 0wlk 29939 0wlkon 29943 0pth 29948 0clwlk 29953 0crct 29956 0cycl 29957 eupth0 30037 eulerpathpr 30063 wlkl0 30190 f1ocnt 32583 hashxpe 32589 lvecdim0 33304 esumcst 33682 cntmeas 33845 ballotlemfval0 34115 signsvtn0 34202 signstfvneq0 34204 signstfveq0 34209 signsvf0 34212 lpadright 34316 derangsn 34780 subfacp1lem6 34795 poimirlem25 37118 poimirlem26 37119 poimirlem27 37120 poimirlem28 37121 rp-isfinite6 42948 fzisoeu 44682 upwordnul 46266 |
Copyright terms: Public domain | W3C validator |