![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashrabsn01 | Structured version Visualization version GIF version |
Description: The size of a restricted class abstraction restricted to a singleton is either 0 or 1. (Contributed by Alexander van der Vekens, 3-Sep-2018.) |
Ref | Expression |
---|---|
hashrabsn01 | ⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . 2 ⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} | |
2 | rabrsn 4731 | . 2 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} → ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴})) | |
3 | fveqeq2 6909 | . . . 4 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 ↔ (♯‘∅) = 𝑁)) | |
4 | eqcom 2734 | . . . . . . 7 ⊢ ((♯‘∅) = 𝑁 ↔ 𝑁 = (♯‘∅)) | |
5 | 4 | biimpi 215 | . . . . . 6 ⊢ ((♯‘∅) = 𝑁 → 𝑁 = (♯‘∅)) |
6 | hash0 14364 | . . . . . 6 ⊢ (♯‘∅) = 0 | |
7 | 5, 6 | eqtrdi 2783 | . . . . 5 ⊢ ((♯‘∅) = 𝑁 → 𝑁 = 0) |
8 | 7 | orcd 871 | . . . 4 ⊢ ((♯‘∅) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) |
9 | 3, 8 | biimtrdi 252 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
10 | fveqeq2 6909 | . . . 4 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 ↔ (♯‘{𝐴}) = 𝑁)) | |
11 | eqcom 2734 | . . . . . . . . 9 ⊢ ((♯‘{𝐴}) = 𝑁 ↔ 𝑁 = (♯‘{𝐴})) | |
12 | 11 | biimpi 215 | . . . . . . . 8 ⊢ ((♯‘{𝐴}) = 𝑁 → 𝑁 = (♯‘{𝐴})) |
13 | hashsng 14366 | . . . . . . . 8 ⊢ (𝐴 ∈ V → (♯‘{𝐴}) = 1) | |
14 | 12, 13 | sylan9eqr 2789 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ (♯‘{𝐴}) = 𝑁) → 𝑁 = 1) |
15 | 14 | olcd 872 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ (♯‘{𝐴}) = 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1)) |
16 | 15 | ex 411 | . . . . 5 ⊢ (𝐴 ∈ V → ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
17 | snprc 4724 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
18 | fveqeq2 6909 | . . . . . . 7 ⊢ ({𝐴} = ∅ → ((♯‘{𝐴}) = 𝑁 ↔ (♯‘∅) = 𝑁)) | |
19 | 18, 8 | biimtrdi 252 | . . . . . 6 ⊢ ({𝐴} = ∅ → ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
20 | 17, 19 | sylbi 216 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
21 | 16, 20 | pm2.61i 182 | . . . 4 ⊢ ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) |
22 | 10, 21 | biimtrdi 252 | . . 3 ⊢ ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
23 | 9, 22 | jaoi 855 | . 2 ⊢ (({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))) |
24 | 1, 2, 23 | mp2b 10 | 1 ⊢ ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 {crab 3428 Vcvv 3471 ∅c0 4324 {csn 4630 ‘cfv 6551 0cc0 11144 1c1 11145 ♯chash 14327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-nn 12249 df-n0 12509 df-z 12595 df-uz 12859 df-fz 13523 df-hash 14328 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |