![]() |
Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > upwordnul | Structured version Visualization version GIF version |
Description: Empty set is an increasing sequence for every range. (Contributed by Ender Ting, 19-Nov-2024.) |
Ref | Expression |
---|---|
upwordnul | ⊢ ∅ ∈ UpWord 𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5307 | . . . 4 ⊢ ∅ ∈ V | |
2 | elab6g 3657 | . . . 4 ⊢ (∅ ∈ V → (∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))))) |
4 | wrd0 14522 | . . . . 5 ⊢ ∅ ∈ Word 𝑆 | |
5 | eleq1a 2824 | . . . . 5 ⊢ (∅ ∈ Word 𝑆 → (𝑤 = ∅ → 𝑤 ∈ Word 𝑆)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝑤 = ∅ → 𝑤 ∈ Word 𝑆) |
7 | fveq2 6897 | . . . . . . . . 9 ⊢ (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅)) | |
8 | hash0 14359 | . . . . . . . . 9 ⊢ (♯‘∅) = 0 | |
9 | 7, 8 | eqtrdi 2784 | . . . . . . . 8 ⊢ (𝑤 = ∅ → (♯‘𝑤) = 0) |
10 | 9 | oveq1d 7435 | . . . . . . 7 ⊢ (𝑤 = ∅ → ((♯‘𝑤) − 1) = (0 − 1)) |
11 | 0red 11248 | . . . . . . . 8 ⊢ (𝑤 = ∅ → 0 ∈ ℝ) | |
12 | 11 | lem1d 12178 | . . . . . . 7 ⊢ (𝑤 = ∅ → (0 − 1) ≤ 0) |
13 | 10, 12 | eqbrtrd 5170 | . . . . . 6 ⊢ (𝑤 = ∅ → ((♯‘𝑤) − 1) ≤ 0) |
14 | 0z 12600 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
15 | 9, 14 | eqeltrdi 2837 | . . . . . . . 8 ⊢ (𝑤 = ∅ → (♯‘𝑤) ∈ ℤ) |
16 | 1zzd 12624 | . . . . . . . 8 ⊢ (𝑤 = ∅ → 1 ∈ ℤ) | |
17 | 15, 16 | zsubcld 12702 | . . . . . . 7 ⊢ (𝑤 = ∅ → ((♯‘𝑤) − 1) ∈ ℤ) |
18 | fzon 13686 | . . . . . . 7 ⊢ ((0 ∈ ℤ ∧ ((♯‘𝑤) − 1) ∈ ℤ) → (((♯‘𝑤) − 1) ≤ 0 ↔ (0..^((♯‘𝑤) − 1)) = ∅)) | |
19 | 14, 17, 18 | sylancr 586 | . . . . . 6 ⊢ (𝑤 = ∅ → (((♯‘𝑤) − 1) ≤ 0 ↔ (0..^((♯‘𝑤) − 1)) = ∅)) |
20 | 13, 19 | mpbid 231 | . . . . 5 ⊢ (𝑤 = ∅ → (0..^((♯‘𝑤) − 1)) = ∅) |
21 | rzal 4509 | . . . . 5 ⊢ ((0..^((♯‘𝑤) − 1)) = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ (𝑤 = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1))) |
23 | 6, 22 | jca 511 | . . 3 ⊢ (𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))) |
24 | 3, 23 | mpgbir 1794 | . 2 ⊢ ∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} |
25 | df-upword 46265 | . 2 ⊢ UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} | |
26 | 24, 25 | eleqtrri 2828 | 1 ⊢ ∅ ∈ UpWord 𝑆 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 = wceq 1534 ∈ wcel 2099 {cab 2705 ∀wral 3058 Vcvv 3471 ∅c0 4323 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 0cc0 11139 1c1 11140 + caddc 11142 < clt 11279 ≤ cle 11280 − cmin 11475 ℤcz 12589 ..^cfzo 13660 ♯chash 14322 Word cword 14497 UpWord cupword 46264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9963 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-n0 12504 df-z 12590 df-uz 12854 df-fz 13518 df-fzo 13661 df-hash 14323 df-word 14498 df-upword 46265 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |