Users' Mathboxes Mathbox for Ender Ting < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upwordnul Structured version   Visualization version   GIF version

Theorem upwordnul 46266
Description: Empty set is an increasing sequence for every range. (Contributed by Ender Ting, 19-Nov-2024.)
Assertion
Ref Expression
upwordnul ∅ ∈ UpWord 𝑆

Proof of Theorem upwordnul
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 5307 . . . 4 ∅ ∈ V
2 elab6g 3657 . . . 4 (∅ ∈ V → (∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1))))))
31, 2ax-mp 5 . . 3 (∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))} ↔ ∀𝑤(𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))))
4 wrd0 14522 . . . . 5 ∅ ∈ Word 𝑆
5 eleq1a 2824 . . . . 5 (∅ ∈ Word 𝑆 → (𝑤 = ∅ → 𝑤 ∈ Word 𝑆))
64, 5ax-mp 5 . . . 4 (𝑤 = ∅ → 𝑤 ∈ Word 𝑆)
7 fveq2 6897 . . . . . . . . 9 (𝑤 = ∅ → (♯‘𝑤) = (♯‘∅))
8 hash0 14359 . . . . . . . . 9 (♯‘∅) = 0
97, 8eqtrdi 2784 . . . . . . . 8 (𝑤 = ∅ → (♯‘𝑤) = 0)
109oveq1d 7435 . . . . . . 7 (𝑤 = ∅ → ((♯‘𝑤) − 1) = (0 − 1))
11 0red 11248 . . . . . . . 8 (𝑤 = ∅ → 0 ∈ ℝ)
1211lem1d 12178 . . . . . . 7 (𝑤 = ∅ → (0 − 1) ≤ 0)
1310, 12eqbrtrd 5170 . . . . . 6 (𝑤 = ∅ → ((♯‘𝑤) − 1) ≤ 0)
14 0z 12600 . . . . . . 7 0 ∈ ℤ
159, 14eqeltrdi 2837 . . . . . . . 8 (𝑤 = ∅ → (♯‘𝑤) ∈ ℤ)
16 1zzd 12624 . . . . . . . 8 (𝑤 = ∅ → 1 ∈ ℤ)
1715, 16zsubcld 12702 . . . . . . 7 (𝑤 = ∅ → ((♯‘𝑤) − 1) ∈ ℤ)
18 fzon 13686 . . . . . . 7 ((0 ∈ ℤ ∧ ((♯‘𝑤) − 1) ∈ ℤ) → (((♯‘𝑤) − 1) ≤ 0 ↔ (0..^((♯‘𝑤) − 1)) = ∅))
1914, 17, 18sylancr 586 . . . . . 6 (𝑤 = ∅ → (((♯‘𝑤) − 1) ≤ 0 ↔ (0..^((♯‘𝑤) − 1)) = ∅))
2013, 19mpbid 231 . . . . 5 (𝑤 = ∅ → (0..^((♯‘𝑤) − 1)) = ∅)
21 rzal 4509 . . . . 5 ((0..^((♯‘𝑤) − 1)) = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))
2220, 21syl 17 . . . 4 (𝑤 = ∅ → ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))
236, 22jca 511 . . 3 (𝑤 = ∅ → (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1))))
243, 23mpgbir 1794 . 2 ∅ ∈ {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))}
25 df-upword 46265 . 2 UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))}
2624, 25eleqtrri 2828 1 ∅ ∈ UpWord 𝑆
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532   = wceq 1534  wcel 2099  {cab 2705  wral 3058  Vcvv 3471  c0 4323   class class class wbr 5148  cfv 6548  (class class class)co 7420  0cc0 11139  1c1 11140   + caddc 11142   < clt 11279  cle 11280  cmin 11475  cz 12589  ..^cfzo 13660  chash 14322  Word cword 14497  UpWord cupword 46264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-n0 12504  df-z 12590  df-uz 12854  df-fz 13518  df-fzo 13661  df-hash 14323  df-word 14498  df-upword 46265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator