MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucpropd Structured version   Visualization version   GIF version

Theorem fucpropd 17962
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same functor categories. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
fucpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
fucpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
fucpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
fucpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
fucpropd.a (𝜑𝐴 ∈ Cat)
fucpropd.b (𝜑𝐵 ∈ Cat)
fucpropd.c (𝜑𝐶 ∈ Cat)
fucpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
fucpropd (𝜑 → (𝐴 FuncCat 𝐶) = (𝐵 FuncCat 𝐷))

Proof of Theorem fucpropd
Dummy variables 𝑎 𝑏 𝑓 𝑔 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucpropd.1 . . . . 5 (𝜑 → (Homf𝐴) = (Homf𝐵))
2 fucpropd.2 . . . . 5 (𝜑 → (compf𝐴) = (compf𝐵))
3 fucpropd.3 . . . . 5 (𝜑 → (Homf𝐶) = (Homf𝐷))
4 fucpropd.4 . . . . 5 (𝜑 → (compf𝐶) = (compf𝐷))
5 fucpropd.a . . . . 5 (𝜑𝐴 ∈ Cat)
6 fucpropd.b . . . . 5 (𝜑𝐵 ∈ Cat)
7 fucpropd.c . . . . 5 (𝜑𝐶 ∈ Cat)
8 fucpropd.d . . . . 5 (𝜑𝐷 ∈ Cat)
91, 2, 3, 4, 5, 6, 7, 8funcpropd 17882 . . . 4 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
109opeq2d 4876 . . 3 (𝜑 → ⟨(Base‘ndx), (𝐴 Func 𝐶)⟩ = ⟨(Base‘ndx), (𝐵 Func 𝐷)⟩)
111, 2, 3, 4, 5, 6, 7, 8natpropd 17961 . . . 4 (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
1211opeq2d 4876 . . 3 (𝜑 → ⟨(Hom ‘ndx), (𝐴 Nat 𝐶)⟩ = ⟨(Hom ‘ndx), (𝐵 Nat 𝐷)⟩)
139sqxpeqd 5704 . . . . 5 (𝜑 → ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) = ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)))
149adantr 480 . . . . 5 ((𝜑𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶))) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
15 nfv 1910 . . . . . 6 𝑓(𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶)))
16 nfcsb1v 3915 . . . . . . 7 𝑓(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))
1716a1i 11 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) → 𝑓(1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
18 fvexd 6906 . . . . . 6 ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) → (1st𝑣) ∈ V)
19 nfv 1910 . . . . . . . 8 𝑔((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣))
20 nfcsb1v 3915 . . . . . . . . 9 𝑔(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))
2120a1i 11 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → 𝑔(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
22 fvexd 6906 . . . . . . . 8 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) ∈ V)
2311ad3antrrr 729 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷))
2423oveqd 7431 . . . . . . . . . 10 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑔(𝐴 Nat 𝐶)) = (𝑔(𝐵 Nat 𝐷)))
2523oveqdr 7442 . . . . . . . . . 10 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ 𝑏 ∈ (𝑔(𝐴 Nat 𝐶))) → (𝑓(𝐴 Nat 𝐶)𝑔) = (𝑓(𝐵 Nat 𝐷)𝑔))
261homfeqbas 17669 . . . . . . . . . . . 12 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
2726ad4antr 731 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (Base‘𝐴) = (Base‘𝐵))
28 eqid 2728 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
29 eqid 2728 . . . . . . . . . . . 12 (Hom ‘𝐶) = (Hom ‘𝐶)
30 eqid 2728 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
31 eqid 2728 . . . . . . . . . . . 12 (comp‘𝐷) = (comp‘𝐷)
323ad5antr 733 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf𝐶) = (Homf𝐷))
334ad5antr 733 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (compf𝐶) = (compf𝐷))
34 eqid 2728 . . . . . . . . . . . . . 14 (Base‘𝐴) = (Base‘𝐴)
35 relfunc 17841 . . . . . . . . . . . . . . 15 Rel (𝐴 Func 𝐶)
36 simpllr 775 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑓 = (1st𝑣))
37 simp-4r 783 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶)))
3837simpld 494 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)))
39 xp1st 8019 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) → (1st𝑣) ∈ (𝐴 Func 𝐶))
4038, 39syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑣) ∈ (𝐴 Func 𝐶))
4136, 40eqeltrd 2829 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑓 ∈ (𝐴 Func 𝐶))
42 1st2ndbr 8040 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
4335, 41, 42sylancr 586 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑓)(𝐴 Func 𝐶)(2nd𝑓))
4434, 28, 43funcf1 17845 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑓):(Base‘𝐴)⟶(Base‘𝐶))
4544ffvelcdmda 7088 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st𝑓)‘𝑥) ∈ (Base‘𝐶))
46 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑔 = (2nd𝑣))
47 xp2nd 8020 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) → (2nd𝑣) ∈ (𝐴 Func 𝐶))
4838, 47syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (2nd𝑣) ∈ (𝐴 Func 𝐶))
4946, 48eqeltrd 2829 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → 𝑔 ∈ (𝐴 Func 𝐶))
50 1st2ndbr 8040 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)) → (1st𝑔)(𝐴 Func 𝐶)(2nd𝑔))
5135, 49, 50sylancr 586 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑔)(𝐴 Func 𝐶)(2nd𝑔))
5234, 28, 51funcf1 17845 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st𝑔):(Base‘𝐴)⟶(Base‘𝐶))
5352ffvelcdmda 7088 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st𝑔)‘𝑥) ∈ (Base‘𝐶))
5437simprd 495 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → ∈ (𝐴 Func 𝐶))
55 1st2ndbr 8040 . . . . . . . . . . . . . . 15 ((Rel (𝐴 Func 𝐶) ∧ ∈ (𝐴 Func 𝐶)) → (1st)(𝐴 Func 𝐶)(2nd))
5635, 54, 55sylancr 586 . . . . . . . . . . . . . 14 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st)(𝐴 Func 𝐶)(2nd))
5734, 28, 56funcf1 17845 . . . . . . . . . . . . 13 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (1st):(Base‘𝐴)⟶(Base‘𝐶))
5857ffvelcdmda 7088 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((1st)‘𝑥) ∈ (Base‘𝐶))
59 eqid 2728 . . . . . . . . . . . . 13 (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶)
60 simplrr 777 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))
6159, 60nat1st2nd 17934 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑎 ∈ (⟨(1st𝑓), (2nd𝑓)⟩(𝐴 Nat 𝐶)⟨(1st𝑔), (2nd𝑔)⟩))
62 simpr 484 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴))
6359, 61, 34, 29, 62natcl 17936 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑎𝑥) ∈ (((1st𝑓)‘𝑥)(Hom ‘𝐶)((1st𝑔)‘𝑥)))
64 simplrl 776 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑏 ∈ (𝑔(𝐴 Nat 𝐶)))
6559, 64nat1st2nd 17934 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑏 ∈ (⟨(1st𝑔), (2nd𝑔)⟩(𝐴 Nat 𝐶)⟨(1st), (2nd)⟩))
6659, 65, 34, 29, 62natcl 17936 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑏𝑥) ∈ (((1st𝑔)‘𝑥)(Hom ‘𝐶)((1st)‘𝑥)))
6728, 29, 30, 31, 32, 33, 45, 53, 58, 63, 66comfeqval 17681 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)) = ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))
6827, 67mpteq12dva 5231 . . . . . . . . . 10 (((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) ∧ (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)) ∧ 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔))) → (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))) = (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))
6924, 25, 68mpoeq123dva 7488 . . . . . . . . 9 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
70 csbeq1a 3904 . . . . . . . . . 10 (𝑔 = (2nd𝑣) → (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7170adantl 481 . . . . . . . . 9 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7269, 71eqtrd 2768 . . . . . . . 8 ((((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) ∧ 𝑔 = (2nd𝑣)) → (𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7319, 21, 22, 72csbiedf 3921 . . . . . . 7 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
74 csbeq1a 3904 . . . . . . . 8 (𝑓 = (1st𝑣) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7574adantl 481 . . . . . . 7 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7673, 75eqtrd 2768 . . . . . 6 (((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) ∧ 𝑓 = (1st𝑣)) → (2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7715, 17, 18, 76csbiedf 3921 . . . . 5 ((𝜑 ∧ (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)) ∧ ∈ (𝐴 Func 𝐶))) → (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))) = (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))
7813, 14, 77mpoeq123dva 7488 . . . 4 (𝜑 → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))))
7978opeq2d 4876 . . 3 (𝜑 → ⟨(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))))⟩ = ⟨(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))⟩)
8010, 12, 79tpeq123d 4748 . 2 (𝜑 → {⟨(Base‘ndx), (𝐴 Func 𝐶)⟩, ⟨(Hom ‘ndx), (𝐴 Nat 𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))))⟩} = {⟨(Base‘ndx), (𝐵 Func 𝐷)⟩, ⟨(Hom ‘ndx), (𝐵 Nat 𝐷)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))⟩})
81 eqid 2728 . . 3 (𝐴 FuncCat 𝐶) = (𝐴 FuncCat 𝐶)
82 eqid 2728 . . 3 (𝐴 Func 𝐶) = (𝐴 Func 𝐶)
83 eqidd 2729 . . 3 (𝜑 → (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥))))))
8481, 82, 59, 34, 30, 5, 7, 83fucval 17942 . 2 (𝜑 → (𝐴 FuncCat 𝐶) = {⟨(Base‘ndx), (𝐴 Func 𝐶)⟩, ⟨(Hom ‘ndx), (𝐴 Nat 𝐶)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐴 Func 𝐶) × (𝐴 Func 𝐶)), ∈ (𝐴 Func 𝐶) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐴 Nat 𝐶)), 𝑎 ∈ (𝑓(𝐴 Nat 𝐶)𝑔) ↦ (𝑥 ∈ (Base‘𝐴) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐶)((1st)‘𝑥))(𝑎𝑥)))))⟩})
85 eqid 2728 . . 3 (𝐵 FuncCat 𝐷) = (𝐵 FuncCat 𝐷)
86 eqid 2728 . . 3 (𝐵 Func 𝐷) = (𝐵 Func 𝐷)
87 eqid 2728 . . 3 (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷)
88 eqid 2728 . . 3 (Base‘𝐵) = (Base‘𝐵)
89 eqidd 2729 . . 3 (𝜑 → (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))) = (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥))))))
9085, 86, 87, 88, 31, 6, 8, 89fucval 17942 . 2 (𝜑 → (𝐵 FuncCat 𝐷) = {⟨(Base‘ndx), (𝐵 Func 𝐷)⟩, ⟨(Hom ‘ndx), (𝐵 Nat 𝐷)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝐵 Func 𝐷) × (𝐵 Func 𝐷)), ∈ (𝐵 Func 𝐷) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝐵 Nat 𝐷)), 𝑎 ∈ (𝑓(𝐵 Nat 𝐷)𝑔) ↦ (𝑥 ∈ (Base‘𝐵) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝐷)((1st)‘𝑥))(𝑎𝑥)))))⟩})
9180, 84, 903eqtr4d 2778 1 (𝜑 → (𝐴 FuncCat 𝐶) = (𝐵 FuncCat 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wnfc 2879  Vcvv 3470  csb 3890  {ctp 4628  cop 4630   class class class wbr 5142  cmpt 5225   × cxp 5670  Rel wrel 5677  cfv 6542  (class class class)co 7414  cmpo 7416  1st c1st 7985  2nd c2nd 7986  ndxcnx 17155  Basecbs 17173  Hom chom 17237  compcco 17238  Catccat 17637  Homf chomf 17639  compfccomf 17640   Func cfunc 17833   Nat cnat 17924   FuncCat cfuc 17925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-map 8840  df-ixp 8910  df-cat 17641  df-cid 17642  df-homf 17643  df-comf 17644  df-func 17837  df-nat 17926  df-fuc 17927
This theorem is referenced by:  oyoncl  18255
  Copyright terms: Public domain W3C validator