![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ad5antr | Structured version Visualization version GIF version |
Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by Wolf Lammen, 5-Apr-2022.) |
Ref | Expression |
---|---|
ad2ant.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ad5antr | ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad2ant.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜒) → 𝜓) |
3 | 2 | ad4antr 731 | 1 ⊢ ((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ad6antr 735 ad6antlr 736 simp-5l 784 fimaproj 8134 catass 17659 catpropd 17682 cidpropd 17683 monpropd 17713 funcpropd 17882 fucpropd 17962 drsdirfi 18290 mhmmnd 19013 ghmquskerlem3 19230 neitr 23077 xkoccn 23516 trust 24127 restutopopn 24136 ucncn 24183 trcfilu 24192 ulmcau 26324 lgamucov 26963 tgcgrxfr 28315 tgbtwnconn1 28372 legov 28382 legso 28396 midexlem 28489 perpneq 28511 footexALT 28515 footex 28518 colperpexlem3 28529 colperpex 28530 opphllem 28532 opphllem3 28546 outpasch 28552 hlpasch 28553 lmieu 28581 trgcopy 28601 trgcopyeu 28603 dfcgra2 28627 acopyeu 28631 cgrg3col4 28650 f1otrg 28668 fnpreimac 32450 nn0xmulclb 32535 s3f1 32664 omndmul2 32786 cyc3conja 32872 isdrng4 32956 erler 32973 rlocf1 32981 fracfld 32988 dvdsruasso 33083 nsgqusf1olem3 33119 rhmquskerlem 33130 elrspunsn 33134 rhmimaidl 33137 mxidlprm 33173 ssmxidllem 33176 qsdrng 33198 fedgmul 33315 extdg1id 33341 qtophaus 33427 locfinreflem 33431 zarclssn 33464 hgt750lemb 34278 matunitlindflem1 37078 heicant 37117 mblfinlem3 37121 mblfinlem4 37122 itg2gt0cn 37137 sstotbnd2 37236 aks4d1p8 41547 aks6d1c2p2 41575 aks6d1c2 41585 aks6d1c6lem3 41628 fsuppind 41795 pell1234qrdich 42253 omabs2 42733 supxrgelem 44691 icccncfext 45247 etransclem35 45629 smflimlem2 46132 |
Copyright terms: Public domain | W3C validator |