MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  freshmansdream Structured version   Visualization version   GIF version

Theorem freshmansdream 21501
Description: For a prime number 𝑃, if 𝑋 and 𝑌 are members of a commutative ring 𝑅 of characteristic 𝑃, then ((𝑋 + 𝑌)↑𝑃) = ((𝑋𝑃) + (𝑌𝑃)). This theorem is sometimes referred to as "the freshman's dream" . (Contributed by Thierry Arnoux, 18-Sep-2023.)
Hypotheses
Ref Expression
freshmansdream.s 𝐵 = (Base‘𝑅)
freshmansdream.a + = (+g𝑅)
freshmansdream.p = (.g‘(mulGrp‘𝑅))
freshmansdream.c 𝑃 = (chr‘𝑅)
freshmansdream.r (𝜑𝑅 ∈ CRing)
freshmansdream.1 (𝜑𝑃 ∈ ℙ)
freshmansdream.x (𝜑𝑋𝐵)
freshmansdream.y (𝜑𝑌𝐵)
Assertion
Ref Expression
freshmansdream (𝜑 → (𝑃 (𝑋 + 𝑌)) = ((𝑃 𝑋) + (𝑃 𝑌)))

Proof of Theorem freshmansdream
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 freshmansdream.r . . 3 (𝜑𝑅 ∈ CRing)
2 crngring 20178 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
3 freshmansdream.c . . . . 5 𝑃 = (chr‘𝑅)
43chrcl 21447 . . . 4 (𝑅 ∈ Ring → 𝑃 ∈ ℕ0)
51, 2, 43syl 18 . . 3 (𝜑𝑃 ∈ ℕ0)
6 freshmansdream.x . . 3 (𝜑𝑋𝐵)
7 freshmansdream.y . . 3 (𝜑𝑌𝐵)
8 freshmansdream.s . . . 4 𝐵 = (Base‘𝑅)
9 eqid 2727 . . . 4 (.r𝑅) = (.r𝑅)
10 eqid 2727 . . . 4 (.g𝑅) = (.g𝑅)
11 freshmansdream.a . . . 4 + = (+g𝑅)
12 eqid 2727 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
13 freshmansdream.p . . . 4 = (.g‘(mulGrp‘𝑅))
148, 9, 10, 11, 12, 13crngbinom 20264 . . 3 (((𝑅 ∈ CRing ∧ 𝑃 ∈ ℕ0) ∧ (𝑋𝐵𝑌𝐵)) → (𝑃 (𝑋 + 𝑌)) = (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))))
151, 5, 6, 7, 14syl22anc 838 . 2 (𝜑 → (𝑃 (𝑋 + 𝑌)) = (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))))
165nn0cnd 12558 . . . . . . 7 (𝜑𝑃 ∈ ℂ)
17 1cnd 11233 . . . . . . 7 (𝜑 → 1 ∈ ℂ)
1816, 17npcand 11599 . . . . . 6 (𝜑 → ((𝑃 − 1) + 1) = 𝑃)
1918oveq2d 7430 . . . . 5 (𝜑 → (0...((𝑃 − 1) + 1)) = (0...𝑃))
2019eqcomd 2733 . . . 4 (𝜑 → (0...𝑃) = (0...((𝑃 − 1) + 1)))
2120mpteq1d 5237 . . 3 (𝜑 → (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))) = (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))
2221oveq2d 7430 . 2 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...𝑃) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))))
23 ringcmn 20211 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
241, 2, 233syl 18 . . . 4 (𝜑𝑅 ∈ CMnd)
25 freshmansdream.1 . . . . 5 (𝜑𝑃 ∈ ℙ)
26 prmnn 16638 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
27 nnm1nn0 12537 . . . . 5 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
2825, 26, 273syl 18 . . . 4 (𝜑 → (𝑃 − 1) ∈ ℕ0)
29 ringgrp 20171 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
301, 2, 293syl 18 . . . . . 6 (𝜑𝑅 ∈ Grp)
3130adantr 480 . . . . 5 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑅 ∈ Grp)
325adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑃 ∈ ℕ0)
33 fzssz 13529 . . . . . . . . 9 (0...((𝑃 − 1) + 1)) ⊆ ℤ
3433a1i 11 . . . . . . . 8 (𝜑 → (0...((𝑃 − 1) + 1)) ⊆ ℤ)
3534sselda 3978 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ ℤ)
36 bccl 14307 . . . . . . 7 ((𝑃 ∈ ℕ0𝑖 ∈ ℤ) → (𝑃C𝑖) ∈ ℕ0)
3732, 35, 36syl2anc 583 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃C𝑖) ∈ ℕ0)
3837nn0zd 12608 . . . . 5 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃C𝑖) ∈ ℤ)
391, 2syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
4039adantr 480 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑅 ∈ Ring)
4112, 8mgpbas 20073 . . . . . . 7 𝐵 = (Base‘(mulGrp‘𝑅))
4212ringmgp 20172 . . . . . . . . 9 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
4339, 42syl 17 . . . . . . . 8 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
4443adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (mulGrp‘𝑅) ∈ Mnd)
45 simpr 484 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ (0...((𝑃 − 1) + 1)))
4619adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (0...((𝑃 − 1) + 1)) = (0...𝑃))
4745, 46eleqtrd 2830 . . . . . . . 8 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ (0...𝑃))
48 fznn0sub 13559 . . . . . . . 8 (𝑖 ∈ (0...𝑃) → (𝑃𝑖) ∈ ℕ0)
4947, 48syl 17 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑃𝑖) ∈ ℕ0)
506adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑋𝐵)
5141, 13, 44, 49, 50mulgnn0cld 19043 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → ((𝑃𝑖) 𝑋) ∈ 𝐵)
52 elfznn0 13620 . . . . . . . 8 (𝑖 ∈ (0...((𝑃 − 1) + 1)) → 𝑖 ∈ ℕ0)
5352adantl 481 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑖 ∈ ℕ0)
547adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → 𝑌𝐵)
5541, 13, 44, 53, 54mulgnn0cld 19043 . . . . . 6 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (𝑖 𝑌) ∈ 𝐵)
568, 9ringcl 20183 . . . . . 6 ((𝑅 ∈ Ring ∧ ((𝑃𝑖) 𝑋) ∈ 𝐵 ∧ (𝑖 𝑌) ∈ 𝐵) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
5740, 51, 55, 56syl3anc 1369 . . . . 5 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
588, 10mulgcl 19039 . . . . 5 ((𝑅 ∈ Grp ∧ (𝑃C𝑖) ∈ ℤ ∧ (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) ∈ 𝐵)
5931, 38, 57, 58syl3anc 1369 . . . 4 ((𝜑𝑖 ∈ (0...((𝑃 − 1) + 1))) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) ∈ 𝐵)
608, 11, 24, 28, 59gsummptfzsplit 19880 . . 3 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = ((𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))))
6130adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑅 ∈ Grp)
62 elfzelz 13527 . . . . . . . . 9 (𝑖 ∈ (0...(𝑃 − 1)) → 𝑖 ∈ ℤ)
635, 62, 36syl2an 595 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑃C𝑖) ∈ ℕ0)
6463nn0zd 12608 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑃C𝑖) ∈ ℤ)
6539adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑅 ∈ Ring)
6665, 42syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (mulGrp‘𝑅) ∈ Mnd)
67 fzssp1 13570 . . . . . . . . . . . 12 (0...(𝑃 − 1)) ⊆ (0...((𝑃 − 1) + 1))
6867, 19sseqtrid 4030 . . . . . . . . . . 11 (𝜑 → (0...(𝑃 − 1)) ⊆ (0...𝑃))
6968sselda 3978 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑖 ∈ (0...𝑃))
7069, 48syl 17 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑃𝑖) ∈ ℕ0)
716adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑋𝐵)
7241, 13, 66, 70, 71mulgnn0cld 19043 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → ((𝑃𝑖) 𝑋) ∈ 𝐵)
73 elfznn0 13620 . . . . . . . . . 10 (𝑖 ∈ (0...(𝑃 − 1)) → 𝑖 ∈ ℕ0)
7473adantl 481 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑖 ∈ ℕ0)
757adantr 480 . . . . . . . . 9 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → 𝑌𝐵)
7641, 13, 66, 74, 75mulgnn0cld 19043 . . . . . . . 8 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (𝑖 𝑌) ∈ 𝐵)
7765, 72, 76, 56syl3anc 1369 . . . . . . 7 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
7861, 64, 77, 58syl3anc 1369 . . . . . 6 ((𝜑𝑖 ∈ (0...(𝑃 − 1))) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) ∈ 𝐵)
798, 11, 24, 28, 78gsummptfzsplitl 19881 . . . . 5 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = ((𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))))
8039adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑅 ∈ Ring)
81 prmdvdsbc 16691 . . . . . . . . . . 11 ((𝑃 ∈ ℙ ∧ 𝑖 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑖))
8225, 81sylan 579 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑃 ∥ (𝑃C𝑖))
8380, 42syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (mulGrp‘𝑅) ∈ Mnd)
845nn0zd 12608 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
85 1nn0 12512 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
86 eluzmn 12853 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℤ ∧ 1 ∈ ℕ0) → 𝑃 ∈ (ℤ‘(𝑃 − 1)))
8784, 85, 86sylancl 585 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ (ℤ‘(𝑃 − 1)))
88 fzss2 13567 . . . . . . . . . . . . . . 15 (𝑃 ∈ (ℤ‘(𝑃 − 1)) → (1...(𝑃 − 1)) ⊆ (1...𝑃))
8987, 88syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1...(𝑃 − 1)) ⊆ (1...𝑃))
9089sselda 3978 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑖 ∈ (1...𝑃))
91 fznn0sub 13559 . . . . . . . . . . . . 13 (𝑖 ∈ (1...𝑃) → (𝑃𝑖) ∈ ℕ0)
9290, 91syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (𝑃𝑖) ∈ ℕ0)
936adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑋𝐵)
9441, 13, 83, 92, 93mulgnn0cld 19043 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → ((𝑃𝑖) 𝑋) ∈ 𝐵)
95 elfznn 13556 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...(𝑃 − 1)) → 𝑖 ∈ ℕ)
9695nnnn0d 12556 . . . . . . . . . . . . 13 (𝑖 ∈ (1...(𝑃 − 1)) → 𝑖 ∈ ℕ0)
9796adantl 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑖 ∈ ℕ0)
987adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → 𝑌𝐵)
9941, 13, 83, 97, 98mulgnn0cld 19043 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (𝑖 𝑌) ∈ 𝐵)
10080, 94, 99, 56syl3anc 1369 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵)
101 eqid 2727 . . . . . . . . . . 11 (0g𝑅) = (0g𝑅)
1023, 8, 10, 101dvdschrmulg 21451 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑃 ∥ (𝑃C𝑖) ∧ (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) ∈ 𝐵) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (0g𝑅))
10380, 82, 100, 102syl3anc 1369 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...(𝑃 − 1))) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (0g𝑅))
104103mpteq2dva 5242 . . . . . . . 8 (𝜑 → (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))) = (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅)))
105104oveq2d 7430 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅))))
106 ringmnd 20176 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
10739, 106syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
108 ovex 7447 . . . . . . . 8 (1...(𝑃 − 1)) ∈ V
109101gsumz 18781 . . . . . . . 8 ((𝑅 ∈ Mnd ∧ (1...(𝑃 − 1)) ∈ V) → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅))) = (0g𝑅))
110107, 108, 109sylancl 585 . . . . . . 7 (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ (0g𝑅))) = (0g𝑅))
111105, 110eqtrd 2767 . . . . . 6 (𝜑 → (𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (0g𝑅))
112 0nn0 12511 . . . . . . . 8 0 ∈ ℕ0
113112a1i 11 . . . . . . 7 (𝜑 → 0 ∈ ℕ0)
11441, 13, 43, 5, 6mulgnn0cld 19043 . . . . . . 7 (𝜑 → (𝑃 𝑋) ∈ 𝐵)
115 simpr 484 . . . . . . . . . 10 ((𝜑𝑖 = 0) → 𝑖 = 0)
116115oveq2d 7430 . . . . . . . . 9 ((𝜑𝑖 = 0) → (𝑃C𝑖) = (𝑃C0))
117115oveq2d 7430 . . . . . . . . . . 11 ((𝜑𝑖 = 0) → (𝑃𝑖) = (𝑃 − 0))
118117oveq1d 7429 . . . . . . . . . 10 ((𝜑𝑖 = 0) → ((𝑃𝑖) 𝑋) = ((𝑃 − 0) 𝑋))
119115oveq1d 7429 . . . . . . . . . 10 ((𝜑𝑖 = 0) → (𝑖 𝑌) = (0 𝑌))
120118, 119oveq12d 7432 . . . . . . . . 9 ((𝜑𝑖 = 0) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) = (((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌)))
121116, 120oveq12d 7432 . . . . . . . 8 ((𝜑𝑖 = 0) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))))
122 bcn0 14295 . . . . . . . . . . . 12 (𝑃 ∈ ℕ0 → (𝑃C0) = 1)
1235, 122syl 17 . . . . . . . . . . 11 (𝜑 → (𝑃C0) = 1)
12416subid1d 11584 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 − 0) = 𝑃)
125124oveq1d 7429 . . . . . . . . . . . . 13 (𝜑 → ((𝑃 − 0) 𝑋) = (𝑃 𝑋))
126 eqid 2727 . . . . . . . . . . . . . . . 16 (1r𝑅) = (1r𝑅)
12712, 126ringidval 20116 . . . . . . . . . . . . . . 15 (1r𝑅) = (0g‘(mulGrp‘𝑅))
12841, 127, 13mulg0 19023 . . . . . . . . . . . . . 14 (𝑌𝐵 → (0 𝑌) = (1r𝑅))
1297, 128syl 17 . . . . . . . . . . . . 13 (𝜑 → (0 𝑌) = (1r𝑅))
130125, 129oveq12d 7432 . . . . . . . . . . . 12 (𝜑 → (((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌)) = ((𝑃 𝑋)(.r𝑅)(1r𝑅)))
1318, 9, 126ringridm 20199 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑃 𝑋) ∈ 𝐵) → ((𝑃 𝑋)(.r𝑅)(1r𝑅)) = (𝑃 𝑋))
13239, 114, 131syl2anc 583 . . . . . . . . . . . 12 (𝜑 → ((𝑃 𝑋)(.r𝑅)(1r𝑅)) = (𝑃 𝑋))
133130, 132eqtrd 2767 . . . . . . . . . . 11 (𝜑 → (((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌)) = (𝑃 𝑋))
134123, 133oveq12d 7432 . . . . . . . . . 10 (𝜑 → ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))) = (1(.g𝑅)(𝑃 𝑋)))
1358, 10mulg1 19029 . . . . . . . . . . 11 ((𝑃 𝑋) ∈ 𝐵 → (1(.g𝑅)(𝑃 𝑋)) = (𝑃 𝑋))
136114, 135syl 17 . . . . . . . . . 10 (𝜑 → (1(.g𝑅)(𝑃 𝑋)) = (𝑃 𝑋))
137134, 136eqtrd 2767 . . . . . . . . 9 (𝜑 → ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))) = (𝑃 𝑋))
138137adantr 480 . . . . . . . 8 ((𝜑𝑖 = 0) → ((𝑃C0)(.g𝑅)(((𝑃 − 0) 𝑋)(.r𝑅)(0 𝑌))) = (𝑃 𝑋))
139121, 138eqtrd 2767 . . . . . . 7 ((𝜑𝑖 = 0) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (𝑃 𝑋))
1408, 107, 113, 114, 139gsumsnd 19900 . . . . . 6 (𝜑 → (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑃 𝑋))
141111, 140oveq12d 7432 . . . . 5 (𝜑 → ((𝑅 Σg (𝑖 ∈ (1...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {0} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))) = ((0g𝑅) + (𝑃 𝑋)))
1428, 11, 101grplid 18917 . . . . . 6 ((𝑅 ∈ Grp ∧ (𝑃 𝑋) ∈ 𝐵) → ((0g𝑅) + (𝑃 𝑋)) = (𝑃 𝑋))
14330, 114, 142syl2anc 583 . . . . 5 (𝜑 → ((0g𝑅) + (𝑃 𝑋)) = (𝑃 𝑋))
14479, 141, 1433eqtrd 2771 . . . 4 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑃 𝑋))
14518, 5eqeltrd 2828 . . . . 5 (𝜑 → ((𝑃 − 1) + 1) ∈ ℕ0)
14641, 13, 43, 5, 7mulgnn0cld 19043 . . . . 5 (𝜑 → (𝑃 𝑌) ∈ 𝐵)
147 simpr 484 . . . . . . . . 9 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → 𝑖 = ((𝑃 − 1) + 1))
14818adantr 480 . . . . . . . . 9 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃 − 1) + 1) = 𝑃)
149147, 148eqtrd 2767 . . . . . . . 8 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → 𝑖 = 𝑃)
150149oveq2d 7430 . . . . . . 7 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (𝑃C𝑖) = (𝑃C𝑃))
151149oveq2d 7430 . . . . . . . . 9 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (𝑃𝑖) = (𝑃𝑃))
152151oveq1d 7429 . . . . . . . 8 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃𝑖) 𝑋) = ((𝑃𝑃) 𝑋))
153149oveq1d 7429 . . . . . . . 8 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (𝑖 𝑌) = (𝑃 𝑌))
154152, 153oveq12d 7432 . . . . . . 7 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → (((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)) = (((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌)))
155150, 154oveq12d 7432 . . . . . 6 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))))
156 bcnn 14297 . . . . . . . . . 10 (𝑃 ∈ ℕ0 → (𝑃C𝑃) = 1)
1575, 156syl 17 . . . . . . . . 9 (𝜑 → (𝑃C𝑃) = 1)
15816subidd 11583 . . . . . . . . . . . . 13 (𝜑 → (𝑃𝑃) = 0)
159158oveq1d 7429 . . . . . . . . . . . 12 (𝜑 → ((𝑃𝑃) 𝑋) = (0 𝑋))
16041, 127, 13mulg0 19023 . . . . . . . . . . . . 13 (𝑋𝐵 → (0 𝑋) = (1r𝑅))
1616, 160syl 17 . . . . . . . . . . . 12 (𝜑 → (0 𝑋) = (1r𝑅))
162159, 161eqtrd 2767 . . . . . . . . . . 11 (𝜑 → ((𝑃𝑃) 𝑋) = (1r𝑅))
163162oveq1d 7429 . . . . . . . . . 10 (𝜑 → (((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌)) = ((1r𝑅)(.r𝑅)(𝑃 𝑌)))
1648, 9, 126ringlidm 20198 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑃 𝑌) ∈ 𝐵) → ((1r𝑅)(.r𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
16539, 146, 164syl2anc 583 . . . . . . . . . 10 (𝜑 → ((1r𝑅)(.r𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
166163, 165eqtrd 2767 . . . . . . . . 9 (𝜑 → (((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
167157, 166oveq12d 7432 . . . . . . . 8 (𝜑 → ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))) = (1(.g𝑅)(𝑃 𝑌)))
1688, 10mulg1 19029 . . . . . . . . 9 ((𝑃 𝑌) ∈ 𝐵 → (1(.g𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
169146, 168syl 17 . . . . . . . 8 (𝜑 → (1(.g𝑅)(𝑃 𝑌)) = (𝑃 𝑌))
170167, 169eqtrd 2767 . . . . . . 7 (𝜑 → ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))) = (𝑃 𝑌))
171170adantr 480 . . . . . 6 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑃)(.g𝑅)(((𝑃𝑃) 𝑋)(.r𝑅)(𝑃 𝑌))) = (𝑃 𝑌))
172155, 171eqtrd 2767 . . . . 5 ((𝜑𝑖 = ((𝑃 − 1) + 1)) → ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))) = (𝑃 𝑌))
1738, 107, 145, 146, 172gsumsnd 19900 . . . 4 (𝜑 → (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = (𝑃 𝑌))
174144, 173oveq12d 7432 . . 3 (𝜑 → ((𝑅 Σg (𝑖 ∈ (0...(𝑃 − 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) + (𝑅 Σg (𝑖 ∈ {((𝑃 − 1) + 1)} ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌)))))) = ((𝑃 𝑋) + (𝑃 𝑌)))
17560, 174eqtrd 2767 . 2 (𝜑 → (𝑅 Σg (𝑖 ∈ (0...((𝑃 − 1) + 1)) ↦ ((𝑃C𝑖)(.g𝑅)(((𝑃𝑖) 𝑋)(.r𝑅)(𝑖 𝑌))))) = ((𝑃 𝑋) + (𝑃 𝑌)))
17615, 22, 1753eqtrd 2771 1 (𝜑 → (𝑃 (𝑋 + 𝑌)) = ((𝑃 𝑋) + (𝑃 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3469  wss 3944  {csn 4624   class class class wbr 5142  cmpt 5225  cfv 6542  (class class class)co 7414  0cc0 11132  1c1 11133   + caddc 11135  cmin 11468  cn 12236  0cn0 12496  cz 12582  cuz 12846  ...cfz 13510  Ccbc 14287  cdvds 16224  cprime 16635  Basecbs 17173  +gcplusg 17226  .rcmulr 17227  0gc0g 17414   Σg cgsu 17415  Mndcmnd 18687  Grpcgrp 18883  .gcmg 19016  CMndccmn 19728  mulGrpcmgp 20067  1rcur 20114  Ringcrg 20166  CRingccrg 20167  chrcchr 21420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-rp 13001  df-fz 13511  df-fzo 13654  df-fl 13783  df-mod 13861  df-seq 13993  df-exp 14053  df-fac 14259  df-bc 14288  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16225  df-gcd 16463  df-prm 16636  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-0g 17416  df-gsum 17417  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-mhm 18733  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-mulg 19017  df-cntz 19261  df-od 19476  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-srg 20120  df-ring 20168  df-cring 20169  df-chr 21424
This theorem is referenced by:  ply1fermltlchr  22224  frobrhm  32935
  Copyright terms: Public domain W3C validator