![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmtno5lem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for fmtno5 46897. (Contributed by AV, 22-Jul-2021.) |
Ref | Expression |
---|---|
fmtno5lem2 | ⊢ (;;;;65536 · 5) = ;;;;;327680 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn0 12523 | . 2 ⊢ 5 ∈ ℕ0 | |
2 | 6nn0 12524 | . . . . 5 ⊢ 6 ∈ ℕ0 | |
3 | 2, 1 | deccl 12723 | . . . 4 ⊢ ;65 ∈ ℕ0 |
4 | 3, 1 | deccl 12723 | . . 3 ⊢ ;;655 ∈ ℕ0 |
5 | 3nn0 12521 | . . 3 ⊢ 3 ∈ ℕ0 | |
6 | 4, 5 | deccl 12723 | . 2 ⊢ ;;;6553 ∈ ℕ0 |
7 | eqid 2728 | . 2 ⊢ ;;;;65536 = ;;;;65536 | |
8 | 0nn0 12518 | . 2 ⊢ 0 ∈ ℕ0 | |
9 | 2nn0 12520 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
10 | 5, 9 | deccl 12723 | . . . . 5 ⊢ ;32 ∈ ℕ0 |
11 | 7nn0 12525 | . . . . 5 ⊢ 7 ∈ ℕ0 | |
12 | 10, 11 | deccl 12723 | . . . 4 ⊢ ;;327 ∈ ℕ0 |
13 | 12, 2 | deccl 12723 | . . 3 ⊢ ;;;3276 ∈ ℕ0 |
14 | eqid 2728 | . . . 4 ⊢ ;;;6553 = ;;;6553 | |
15 | 1nn0 12519 | . . . 4 ⊢ 1 ∈ ℕ0 | |
16 | 5p1e6 12390 | . . . . 5 ⊢ (5 + 1) = 6 | |
17 | eqid 2728 | . . . . . 6 ⊢ ;;655 = ;;655 | |
18 | eqid 2728 | . . . . . . . 8 ⊢ ;65 = ;65 | |
19 | 6t5e30 12815 | . . . . . . . . 9 ⊢ (6 · 5) = ;30 | |
20 | 2cn 12318 | . . . . . . . . . 10 ⊢ 2 ∈ ℂ | |
21 | 20 | addlidi 11433 | . . . . . . . . 9 ⊢ (0 + 2) = 2 |
22 | 5, 8, 9, 19, 21 | decaddi 12768 | . . . . . . . 8 ⊢ ((6 · 5) + 2) = ;32 |
23 | 5t5e25 12811 | . . . . . . . 8 ⊢ (5 · 5) = ;25 | |
24 | 1, 2, 1, 18, 1, 9, 22, 23 | decmul1c 12773 | . . . . . . 7 ⊢ (;65 · 5) = ;;325 |
25 | 5p2e7 12399 | . . . . . . 7 ⊢ (5 + 2) = 7 | |
26 | 10, 1, 9, 24, 25 | decaddi 12768 | . . . . . 6 ⊢ ((;65 · 5) + 2) = ;;327 |
27 | 1, 3, 1, 17, 1, 9, 26, 23 | decmul1c 12773 | . . . . 5 ⊢ (;;655 · 5) = ;;;3275 |
28 | 12, 1, 16, 27 | decsuc 12739 | . . . 4 ⊢ ((;;655 · 5) + 1) = ;;;3276 |
29 | 5cn 12331 | . . . . 5 ⊢ 5 ∈ ℂ | |
30 | 3cn 12324 | . . . . 5 ⊢ 3 ∈ ℂ | |
31 | 5t3e15 12809 | . . . . 5 ⊢ (5 · 3) = ;15 | |
32 | 29, 30, 31 | mulcomli 11254 | . . . 4 ⊢ (3 · 5) = ;15 |
33 | 1, 4, 5, 14, 1, 15, 28, 32 | decmul1c 12773 | . . 3 ⊢ (;;;6553 · 5) = ;;;;32765 |
34 | 5p3e8 12400 | . . 3 ⊢ (5 + 3) = 8 | |
35 | 13, 1, 5, 33, 34 | decaddi 12768 | . 2 ⊢ ((;;;6553 · 5) + 3) = ;;;;32768 |
36 | 1, 6, 2, 7, 8, 5, 35, 19 | decmul1c 12773 | 1 ⊢ (;;;;65536 · 5) = ;;;;;327680 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 (class class class)co 7420 0cc0 11139 1c1 11140 · cmul 11144 2c2 12298 3c3 12299 5c5 12301 6c6 12302 7c7 12303 8c8 12304 ;cdc 12708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-ltxr 11284 df-sub 11477 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-dec 12709 |
This theorem is referenced by: fmtno5lem4 46896 |
Copyright terms: Public domain | W3C validator |