![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > expcnfg | Structured version Visualization version GIF version |
Description: If 𝐹 is a complex continuous function and N is a fixed number, then F^N is continuous too. A generalization of expcncf 24841. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
Ref | Expression |
---|---|
expcnfg.1 | ⊢ Ⅎ𝑥𝐹 |
expcnfg.2 | ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) |
expcnfg.3 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
Ref | Expression |
---|---|
expcnfg | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) ∈ (𝐴–cn→ℂ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑡((𝐹‘𝑥)↑𝑁) | |
2 | expcnfg.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐹 | |
3 | nfcv 2899 | . . . . . . 7 ⊢ Ⅎ𝑥𝑡 | |
4 | 2, 3 | nffv 6902 | . . . . . 6 ⊢ Ⅎ𝑥(𝐹‘𝑡) |
5 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑥↑ | |
6 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑥𝑁 | |
7 | 4, 5, 6 | nfov 7445 | . . . . 5 ⊢ Ⅎ𝑥((𝐹‘𝑡)↑𝑁) |
8 | fveq2 6892 | . . . . . 6 ⊢ (𝑥 = 𝑡 → (𝐹‘𝑥) = (𝐹‘𝑡)) | |
9 | 8 | oveq1d 7430 | . . . . 5 ⊢ (𝑥 = 𝑡 → ((𝐹‘𝑥)↑𝑁) = ((𝐹‘𝑡)↑𝑁)) |
10 | 1, 7, 9 | cbvmpt 5254 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) = (𝑡 ∈ 𝐴 ↦ ((𝐹‘𝑡)↑𝑁)) |
11 | expcnfg.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→ℂ)) | |
12 | cncff 24807 | . . . . . . . . 9 ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐹:𝐴⟶ℂ) | |
13 | 11, 12 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
14 | 13 | ffvelcdmda 7089 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → (𝐹‘𝑡) ∈ ℂ) |
15 | expcnfg.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
16 | 15 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → 𝑁 ∈ ℕ0) |
17 | 14, 16 | expcld 14137 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → ((𝐹‘𝑡)↑𝑁) ∈ ℂ) |
18 | oveq1 7422 | . . . . . . . 8 ⊢ (𝑥 = (𝐹‘𝑡) → (𝑥↑𝑁) = ((𝐹‘𝑡)↑𝑁)) | |
19 | eqid 2728 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) = (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) | |
20 | 4, 7, 18, 19 | fvmptf 7021 | . . . . . . 7 ⊢ (((𝐹‘𝑡) ∈ ℂ ∧ ((𝐹‘𝑡)↑𝑁) ∈ ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)) = ((𝐹‘𝑡)↑𝑁)) |
21 | 14, 17, 20 | syl2anc 583 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)) = ((𝐹‘𝑡)↑𝑁)) |
22 | 21 | eqcomd 2734 | . . . . 5 ⊢ ((𝜑 ∧ 𝑡 ∈ 𝐴) → ((𝐹‘𝑡)↑𝑁) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡))) |
23 | 22 | mpteq2dva 5243 | . . . 4 ⊢ (𝜑 → (𝑡 ∈ 𝐴 ↦ ((𝐹‘𝑡)↑𝑁)) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)))) |
24 | 10, 23 | eqtrid 2780 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)))) |
25 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ) | |
26 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → 𝑁 ∈ ℕ0) |
27 | 25, 26 | expcld 14137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℂ) → (𝑥↑𝑁) ∈ ℂ) |
28 | 27 | fmpttd 7120 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)):ℂ⟶ℂ) |
29 | fcompt 7137 | . . . 4 ⊢ (((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)):ℂ⟶ℂ ∧ 𝐹:𝐴⟶ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)))) | |
30 | 28, 13, 29 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) = (𝑡 ∈ 𝐴 ↦ ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁))‘(𝐹‘𝑡)))) |
31 | 24, 30 | eqtr4d 2771 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) = ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹)) |
32 | expcncf 24841 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) | |
33 | 15, 32 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
34 | 11, 33 | cncfco 24821 | . 2 ⊢ (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∘ 𝐹) ∈ (𝐴–cn→ℂ)) |
35 | 31, 34 | eqeltrd 2829 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((𝐹‘𝑥)↑𝑁)) ∈ (𝐴–cn→ℂ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Ⅎwnfc 2879 ↦ cmpt 5226 ∘ ccom 5677 ⟶wf 6539 ‘cfv 6543 (class class class)co 7415 ℂcc 11131 ℕ0cn0 12497 ↑cexp 14053 –cn→ccncf 24790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7680 df-om 7866 df-1st 7988 df-2nd 7989 df-supp 8161 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-2o 8482 df-er 8719 df-map 8841 df-ixp 8911 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-fsupp 9381 df-fi 9429 df-sup 9460 df-inf 9461 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-z 12584 df-dec 12703 df-uz 12848 df-q 12958 df-rp 13002 df-xneg 13119 df-xadd 13120 df-xmul 13121 df-icc 13358 df-fz 13512 df-fzo 13655 df-seq 13994 df-exp 14054 df-hash 14317 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17398 df-topn 17399 df-0g 17417 df-gsum 17418 df-topgen 17419 df-pt 17420 df-prds 17423 df-xrs 17478 df-qtop 17483 df-imas 17484 df-xps 17486 df-mre 17560 df-mrc 17561 df-acs 17563 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-submnd 18735 df-mulg 19018 df-cntz 19262 df-cmn 19731 df-psmet 21265 df-xmet 21266 df-met 21267 df-bl 21268 df-mopn 21269 df-cnfld 21274 df-top 22790 df-topon 22807 df-topsp 22829 df-bases 22843 df-cn 23125 df-cnp 23126 df-tx 23460 df-hmeo 23653 df-xms 24220 df-ms 24221 df-tms 24222 df-cncf 24792 |
This theorem is referenced by: ibliccsinexp 45330 itgsinexplem1 45333 itgsinexp 45334 |
Copyright terms: Public domain | W3C validator |