MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusvnfb Structured version   Visualization version   GIF version

Theorem eusvnfb 5393
Description: Two ways to say that 𝐴(𝑥) is a set expression that does not depend on 𝑥. (Contributed by Mario Carneiro, 18-Nov-2016.)
Assertion
Ref Expression
eusvnfb (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (𝑥𝐴𝐴 ∈ V))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusvnfb
StepHypRef Expression
1 eusvnf 5392 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
2 euex 2567 . . . 4 (∃!𝑦𝑥 𝑦 = 𝐴 → ∃𝑦𝑥 𝑦 = 𝐴)
3 eqvisset 3489 . . . . . 6 (𝑦 = 𝐴𝐴 ∈ V)
43sps 2174 . . . . 5 (∀𝑥 𝑦 = 𝐴𝐴 ∈ V)
54exlimiv 1926 . . . 4 (∃𝑦𝑥 𝑦 = 𝐴𝐴 ∈ V)
62, 5syl 17 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴𝐴 ∈ V)
71, 6jca 511 . 2 (∃!𝑦𝑥 𝑦 = 𝐴 → (𝑥𝐴𝐴 ∈ V))
8 isset 3484 . . . . 5 (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴)
9 nfcvd 2900 . . . . . . . 8 (𝑥𝐴𝑥𝑦)
10 id 22 . . . . . . . 8 (𝑥𝐴𝑥𝐴)
119, 10nfeqd 2910 . . . . . . 7 (𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴)
1211nf5rd 2185 . . . . . 6 (𝑥𝐴 → (𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴))
1312eximdv 1913 . . . . 5 (𝑥𝐴 → (∃𝑦 𝑦 = 𝐴 → ∃𝑦𝑥 𝑦 = 𝐴))
148, 13biimtrid 241 . . . 4 (𝑥𝐴 → (𝐴 ∈ V → ∃𝑦𝑥 𝑦 = 𝐴))
1514imp 406 . . 3 ((𝑥𝐴𝐴 ∈ V) → ∃𝑦𝑥 𝑦 = 𝐴)
16 eusv1 5391 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ ∃𝑦𝑥 𝑦 = 𝐴)
1715, 16sylibr 233 . 2 ((𝑥𝐴𝐴 ∈ V) → ∃!𝑦𝑥 𝑦 = 𝐴)
187, 17impbii 208 1 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (𝑥𝐴𝐴 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1532   = wceq 1534  wex 1774  wcel 2099  ∃!weu 2558  wnfc 2879  Vcvv 3471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-nul 4324
This theorem is referenced by:  eusv2nf  5395  eusv2  5396
  Copyright terms: Public domain W3C validator