![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sps | Structured version Visualization version GIF version |
Description: Generalization of antecedent. (Contributed by NM, 5-Jan-1993.) |
Ref | Expression |
---|---|
sps.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
sps | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2172 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
2 | sps.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-12 2167 |
This theorem depends on definitions: df-bi 206 df-ex 1775 |
This theorem is referenced by: 2sp 2175 19.2g 2177 nfim1 2188 axc16g 2247 drsb2 2253 axc11r 2361 axc15 2417 equvel 2451 sb4a 2475 dfsb1 2476 dfsb2 2488 drsb1 2490 nfsb4t 2494 sbco2 2506 sbco3 2508 sb9 2514 sbal1 2523 sbal2 2524 eujustALT 2562 2eu6 2648 ralcom2 3370 ceqsalgALT 3506 reu6 3721 sbcal 3840 rexdifi 4144 reldisjOLD 4453 dfnfc2 4932 nfnid 5375 eusvnfb 5393 mosubopt 5512 dfid3 5579 fv3 6915 fvmptt 7025 fnoprabg 7543 fprlem1 8305 wfrlem5OLD 8333 pssnn 9192 pssnnOLD 9289 frrlem15 9780 kmlem16 10188 nd3 10612 axunndlem1 10618 axunnd 10619 axpowndlem1 10620 axregndlem1 10625 axregndlem2 10626 axacndlem5 10634 fundmpss 35362 nalfal 35887 unisym1 35907 bj-sbsb 36314 wl-nfimf1 36993 wl-axc11r 36997 wl-dral1d 36998 wl-nfs1t 37004 wl-sb8t 37019 wl-sbhbt 37021 wl-equsb4 37024 wl-sbalnae 37029 wl-2spsbbi 37032 wl-mo3t 37043 wl-ax11-lem5 37056 wl-ax11-lem8 37059 cotrintab 43044 pm11.57 43826 axc5c4c711toc7 43841 axc11next 43843 pm14.122b 43860 dropab1 43884 dropab2 43885 ax6e2eq 43996 |
Copyright terms: Public domain | W3C validator |