MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqd Structured version   Visualization version   GIF version

Theorem nfeqd 2909
Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
nfeqd.2 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfeqd (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)

Proof of Theorem nfeqd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2720 . 2 (𝐴 = 𝐵 ↔ ∀𝑦(𝑦𝐴𝑦𝐵))
2 nfv 1909 . . 3 𝑦𝜑
3 nfeqd.1 . . . . . 6 (𝜑𝑥𝐴)
4 df-nfc 2880 . . . . . 6 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
53, 4sylib 217 . . . . 5 (𝜑 → ∀𝑦𝑥 𝑦𝐴)
6519.21bi 2177 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐴)
7 nfeqd.2 . . . . . 6 (𝜑𝑥𝐵)
8 df-nfc 2880 . . . . . 6 (𝑥𝐵 ↔ ∀𝑦𝑥 𝑦𝐵)
97, 8sylib 217 . . . . 5 (𝜑 → ∀𝑦𝑥 𝑦𝐵)
10919.21bi 2177 . . . 4 (𝜑 → Ⅎ𝑥 𝑦𝐵)
116, 10nfbid 1897 . . 3 (𝜑 → Ⅎ𝑥(𝑦𝐴𝑦𝐵))
122, 11nfald 2316 . 2 (𝜑 → Ⅎ𝑥𝑦(𝑦𝐴𝑦𝐵))
131, 12nfxfrd 1848 1 (𝜑 → Ⅎ𝑥 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1531   = wceq 1533  wnf 1777  wcel 2098  wnfc 2878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-nf 1778  df-cleq 2719  df-nfc 2880
This theorem is referenced by:  nfeld  2910  nfeq  2912  nfned  3040  issetft  3485  sbcralt  3865  csbiebt  3922  csbie2df  4442  dfnfc2  4934  eusvnfb  5395  eusv2i  5396  dfid3  5581  iota2df  6538  riotaeqimp  7407  riota5f  7409  oprabid  7456  axrepndlem1  10621  axrepndlem2  10622  axunnd  10625  axpowndlem4  10629  axregndlem2  10632  axinfndlem1  10634  axinfnd  10635  axacndlem4  10639  axacndlem5  10640  axacnd  10641  bj-elgab  36422  bj-gabima  36423  wl-issetft  37054  riotasv2d  38433  nfxnegd  44825
  Copyright terms: Public domain W3C validator