![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > estrcid | Structured version Visualization version GIF version |
Description: The identity arrow in the category of extensible structures is the identity function of base sets. (Contributed by AV, 8-Mar-2020.) |
Ref | Expression |
---|---|
estrccat.c | ⊢ 𝐶 = (ExtStrCat‘𝑈) |
estrcid.o | ⊢ 1 = (Id‘𝐶) |
estrcid.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
estrcid.x | ⊢ (𝜑 → 𝑋 ∈ 𝑈) |
Ref | Expression |
---|---|
estrcid | ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ (Base‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | estrcid.o | . . 3 ⊢ 1 = (Id‘𝐶) | |
2 | estrcid.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
3 | estrccat.c | . . . . . 6 ⊢ 𝐶 = (ExtStrCat‘𝑈) | |
4 | 3 | estrccatid 18115 | . . . . 5 ⊢ (𝑈 ∈ 𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝑈 ↦ ( I ↾ (Base‘𝑥))))) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝑈 ↦ ( I ↾ (Base‘𝑥))))) |
6 | 5 | simprd 495 | . . 3 ⊢ (𝜑 → (Id‘𝐶) = (𝑥 ∈ 𝑈 ↦ ( I ↾ (Base‘𝑥)))) |
7 | 1, 6 | eqtrid 2779 | . 2 ⊢ (𝜑 → 1 = (𝑥 ∈ 𝑈 ↦ ( I ↾ (Base‘𝑥)))) |
8 | fveq2 6891 | . . . 4 ⊢ (𝑥 = 𝑋 → (Base‘𝑥) = (Base‘𝑋)) | |
9 | 8 | reseq2d 5979 | . . 3 ⊢ (𝑥 = 𝑋 → ( I ↾ (Base‘𝑥)) = ( I ↾ (Base‘𝑋))) |
10 | 9 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → ( I ↾ (Base‘𝑥)) = ( I ↾ (Base‘𝑋))) |
11 | estrcid.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑈) | |
12 | fvexd 6906 | . . 3 ⊢ (𝜑 → (Base‘𝑋) ∈ V) | |
13 | 12 | resiexd 7222 | . 2 ⊢ (𝜑 → ( I ↾ (Base‘𝑋)) ∈ V) |
14 | 7, 10, 11, 13 | fvmptd 7006 | 1 ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ (Base‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ↦ cmpt 5225 I cid 5569 ↾ cres 5674 ‘cfv 6542 Basecbs 17173 Catccat 17637 Idccid 17638 ExtStrCatcestrc 18105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-fz 13511 df-struct 17109 df-slot 17144 df-ndx 17156 df-base 17174 df-hom 17250 df-cco 17251 df-cat 17641 df-cid 17642 df-estrc 18106 |
This theorem is referenced by: funcestrcsetclem7 18130 funcsetcestrclem7 18145 rnghmsubcsetclem1 20557 rngcid 20561 rhmsubcsetclem1 20586 ringcid 20590 |
Copyright terms: Public domain | W3C validator |