MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ehl2eudisval Structured version   Visualization version   GIF version

Theorem ehl2eudisval 25344
Description: The value of the Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.)
Hypotheses
Ref Expression
ehl2eudis.e 𝐸 = (𝔼hil‘2)
ehl2eudis.x 𝑋 = (ℝ ↑m {1, 2})
ehl2eudis.d 𝐷 = (dist‘𝐸)
Assertion
Ref Expression
ehl2eudisval ((𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))

Proof of Theorem ehl2eudisval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ehl2eudis.e . . . 4 𝐸 = (𝔼hil‘2)
2 ehl2eudis.x . . . 4 𝑋 = (ℝ ↑m {1, 2})
3 ehl2eudis.d . . . 4 𝐷 = (dist‘𝐸)
41, 2, 3ehl2eudis 25343 . . 3 𝐷 = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))
54oveqi 7427 . 2 (𝐹𝐷𝐺) = (𝐹(𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))𝐺)
6 eqidd 2729 . . 3 ((𝐹𝑋𝐺𝑋) → (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) = (𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))))
7 fveq1 6890 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1))
8 fveq1 6890 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔‘1) = (𝐺‘1))
97, 8oveqan12d 7433 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓‘1) − (𝑔‘1)) = ((𝐹‘1) − (𝐺‘1)))
109oveq1d 7429 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (((𝑓‘1) − (𝑔‘1))↑2) = (((𝐹‘1) − (𝐺‘1))↑2))
11 fveq1 6890 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘2) = (𝐹‘2))
12 fveq1 6890 . . . . . . . 8 (𝑔 = 𝐺 → (𝑔‘2) = (𝐺‘2))
1311, 12oveqan12d 7433 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓‘2) − (𝑔‘2)) = ((𝐹‘2) − (𝐺‘2)))
1413oveq1d 7429 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (((𝑓‘2) − (𝑔‘2))↑2) = (((𝐹‘2) − (𝐺‘2))↑2))
1510, 14oveq12d 7432 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)) = ((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))
1615fveq2d 6895 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
1716adantl 481 . . 3 (((𝐹𝑋𝐺𝑋) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
18 simpl 482 . . 3 ((𝐹𝑋𝐺𝑋) → 𝐹𝑋)
19 simpr 484 . . 3 ((𝐹𝑋𝐺𝑋) → 𝐺𝑋)
20 fvexd 6906 . . 3 ((𝐹𝑋𝐺𝑋) → (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))) ∈ V)
216, 17, 18, 19, 20ovmpod 7567 . 2 ((𝐹𝑋𝐺𝑋) → (𝐹(𝑓𝑋, 𝑔𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
225, 21eqtrid 2780 1 ((𝐹𝑋𝐺𝑋) → (𝐹𝐷𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3470  {cpr 4626  cfv 6542  (class class class)co 7414  cmpo 7416  m cmap 8838  cr 11131  1c1 11133   + caddc 11135  cmin 11468  2c2 12291  cexp 14052  csqrt 15206  distcds 17235  𝔼hilcehl 25305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211  ax-mulf 11212
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-sup 9459  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-rp 13001  df-fz 13511  df-fzo 13654  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-sum 15659  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-0g 17416  df-gsum 17417  df-prds 17422  df-pws 17424  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-mhm 18733  df-grp 18886  df-minusg 18887  df-sbg 18888  df-subg 19071  df-ghm 19161  df-cntz 19261  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-cring 20169  df-oppr 20266  df-dvdsr 20289  df-unit 20290  df-invr 20320  df-dvr 20333  df-rhm 20404  df-subrng 20476  df-subrg 20501  df-drng 20619  df-field 20620  df-staf 20718  df-srng 20719  df-lmod 20738  df-lss 20809  df-sra 21051  df-rgmod 21052  df-cnfld 21273  df-refld 21530  df-dsmm 21659  df-frlm 21674  df-nm 24484  df-tng 24486  df-tcph 25090  df-rrx 25306  df-ehl 25307
This theorem is referenced by:  ehl2eudisval0  47792  2sphere  47816
  Copyright terms: Public domain W3C validator