![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ehl2eudisval | Structured version Visualization version GIF version |
Description: The value of the Euclidean distance function in a real Euclidean space of dimension 2. (Contributed by AV, 16-Jan-2023.) |
Ref | Expression |
---|---|
ehl2eudis.e | ⊢ 𝐸 = (𝔼hil‘2) |
ehl2eudis.x | ⊢ 𝑋 = (ℝ ↑m {1, 2}) |
ehl2eudis.d | ⊢ 𝐷 = (dist‘𝐸) |
Ref | Expression |
---|---|
ehl2eudisval | ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ehl2eudis.e | . . . 4 ⊢ 𝐸 = (𝔼hil‘2) | |
2 | ehl2eudis.x | . . . 4 ⊢ 𝑋 = (ℝ ↑m {1, 2}) | |
3 | ehl2eudis.d | . . . 4 ⊢ 𝐷 = (dist‘𝐸) | |
4 | 1, 2, 3 | ehl2eudis 25343 | . . 3 ⊢ 𝐷 = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) |
5 | 4 | oveqi 7427 | . 2 ⊢ (𝐹𝐷𝐺) = (𝐹(𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))𝐺) |
6 | eqidd 2729 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)))) = (𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))) | |
7 | fveq1 6890 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1)) | |
8 | fveq1 6890 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑔‘1) = (𝐺‘1)) | |
9 | 7, 8 | oveqan12d 7433 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘1) − (𝑔‘1)) = ((𝐹‘1) − (𝐺‘1))) |
10 | 9 | oveq1d 7429 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((𝑓‘1) − (𝑔‘1))↑2) = (((𝐹‘1) − (𝐺‘1))↑2)) |
11 | fveq1 6890 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘2) = (𝐹‘2)) | |
12 | fveq1 6890 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑔‘2) = (𝐺‘2)) | |
13 | 11, 12 | oveqan12d 7433 | . . . . . . 7 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓‘2) − (𝑔‘2)) = ((𝐹‘2) − (𝐺‘2))) |
14 | 13 | oveq1d 7429 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (((𝑓‘2) − (𝑔‘2))↑2) = (((𝐹‘2) − (𝐺‘2))↑2)) |
15 | 10, 14 | oveq12d 7432 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2)) = ((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))) |
16 | 15 | fveq2d 6895 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))) |
17 | 16 | adantl 481 | . . 3 ⊢ (((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))) |
18 | simpl 482 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐹 ∈ 𝑋) | |
19 | simpr 484 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → 𝐺 ∈ 𝑋) | |
20 | fvexd 6906 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2))) ∈ V) | |
21 | 6, 17, 18, 19, 20 | ovmpod 7567 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹(𝑓 ∈ 𝑋, 𝑔 ∈ 𝑋 ↦ (√‘((((𝑓‘1) − (𝑔‘1))↑2) + (((𝑓‘2) − (𝑔‘2))↑2))))𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))) |
22 | 5, 21 | eqtrid 2780 | 1 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹𝐷𝐺) = (√‘((((𝐹‘1) − (𝐺‘1))↑2) + (((𝐹‘2) − (𝐺‘2))↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3470 {cpr 4626 ‘cfv 6542 (class class class)co 7414 ∈ cmpo 7416 ↑m cmap 8838 ℝcr 11131 1c1 11133 + caddc 11135 − cmin 11468 2c2 12291 ↑cexp 14052 √csqrt 15206 distcds 17235 𝔼hilcehl 25305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 ax-addf 11211 ax-mulf 11212 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9380 df-sup 9459 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-rp 13001 df-fz 13511 df-fzo 13654 df-seq 13993 df-exp 14053 df-hash 14316 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15458 df-sum 15659 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-0g 17416 df-gsum 17417 df-prds 17422 df-pws 17424 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-mhm 18733 df-grp 18886 df-minusg 18887 df-sbg 18888 df-subg 19071 df-ghm 19161 df-cntz 19261 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 df-cring 20169 df-oppr 20266 df-dvdsr 20289 df-unit 20290 df-invr 20320 df-dvr 20333 df-rhm 20404 df-subrng 20476 df-subrg 20501 df-drng 20619 df-field 20620 df-staf 20718 df-srng 20719 df-lmod 20738 df-lss 20809 df-sra 21051 df-rgmod 21052 df-cnfld 21273 df-refld 21530 df-dsmm 21659 df-frlm 21674 df-nm 24484 df-tng 24486 df-tcph 25090 df-rrx 25306 df-ehl 25307 |
This theorem is referenced by: ehl2eudisval0 47792 2sphere 47816 |
Copyright terms: Public domain | W3C validator |