![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divalglem0 | Structured version Visualization version GIF version |
Description: Lemma for divalg 16373. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
divalglem0.1 | ⊢ 𝑁 ∈ ℤ |
divalglem0.2 | ⊢ 𝐷 ∈ ℤ |
Ref | Expression |
---|---|
divalglem0 | ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divalglem0.2 | . . . . . 6 ⊢ 𝐷 ∈ ℤ | |
2 | iddvds 16240 | . . . . . . 7 ⊢ (𝐷 ∈ ℤ → 𝐷 ∥ 𝐷) | |
3 | dvdsabsb 16246 | . . . . . . . 8 ⊢ ((𝐷 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ (abs‘𝐷))) | |
4 | 3 | anidms 566 | . . . . . . 7 ⊢ (𝐷 ∈ ℤ → (𝐷 ∥ 𝐷 ↔ 𝐷 ∥ (abs‘𝐷))) |
5 | 2, 4 | mpbid 231 | . . . . . 6 ⊢ (𝐷 ∈ ℤ → 𝐷 ∥ (abs‘𝐷)) |
6 | 1, 5 | ax-mp 5 | . . . . 5 ⊢ 𝐷 ∥ (abs‘𝐷) |
7 | nn0abscl 15285 | . . . . . . . 8 ⊢ (𝐷 ∈ ℤ → (abs‘𝐷) ∈ ℕ0) | |
8 | 1, 7 | ax-mp 5 | . . . . . . 7 ⊢ (abs‘𝐷) ∈ ℕ0 |
9 | 8 | nn0zi 12611 | . . . . . 6 ⊢ (abs‘𝐷) ∈ ℤ |
10 | dvdsmultr2 16268 | . . . . . 6 ⊢ ((𝐷 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (𝐾 · (abs‘𝐷)))) | |
11 | 1, 9, 10 | mp3an13 1449 | . . . . 5 ⊢ (𝐾 ∈ ℤ → (𝐷 ∥ (abs‘𝐷) → 𝐷 ∥ (𝐾 · (abs‘𝐷)))) |
12 | 6, 11 | mpi 20 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐷 ∥ (𝐾 · (abs‘𝐷))) |
13 | 12 | adantl 481 | . . 3 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐷 ∥ (𝐾 · (abs‘𝐷))) |
14 | divalglem0.1 | . . . . 5 ⊢ 𝑁 ∈ ℤ | |
15 | zsubcl 12628 | . . . . 5 ⊢ ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (𝑁 − 𝑅) ∈ ℤ) | |
16 | 14, 15 | mpan 689 | . . . 4 ⊢ (𝑅 ∈ ℤ → (𝑁 − 𝑅) ∈ ℤ) |
17 | zmulcl 12635 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ (abs‘𝐷) ∈ ℤ) → (𝐾 · (abs‘𝐷)) ∈ ℤ) | |
18 | 9, 17 | mpan2 690 | . . . 4 ⊢ (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℤ) |
19 | dvds2add 16260 | . . . 4 ⊢ ((𝐷 ∈ ℤ ∧ (𝑁 − 𝑅) ∈ ℤ ∧ (𝐾 · (abs‘𝐷)) ∈ ℤ) → ((𝐷 ∥ (𝑁 − 𝑅) ∧ 𝐷 ∥ (𝐾 · (abs‘𝐷))) → 𝐷 ∥ ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷))))) | |
20 | 1, 16, 18, 19 | mp3an3an 1464 | . . 3 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐷 ∥ (𝑁 − 𝑅) ∧ 𝐷 ∥ (𝐾 · (abs‘𝐷))) → 𝐷 ∥ ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷))))) |
21 | 13, 20 | mpan2d 693 | . 2 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) → 𝐷 ∥ ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷))))) |
22 | zcn 12587 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
23 | 14, 22 | ax-mp 5 | . . . 4 ⊢ 𝑁 ∈ ℂ |
24 | zcn 12587 | . . . 4 ⊢ (𝑅 ∈ ℤ → 𝑅 ∈ ℂ) | |
25 | 18 | zcnd 12691 | . . . 4 ⊢ (𝐾 ∈ ℤ → (𝐾 · (abs‘𝐷)) ∈ ℂ) |
26 | subsub 11514 | . . . 4 ⊢ ((𝑁 ∈ ℂ ∧ 𝑅 ∈ ℂ ∧ (𝐾 · (abs‘𝐷)) ∈ ℂ) → (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) = ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷)))) | |
27 | 23, 24, 25, 26 | mp3an3an 1464 | . . 3 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) = ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷)))) |
28 | 27 | breq2d 5154 | . 2 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))) ↔ 𝐷 ∥ ((𝑁 − 𝑅) + (𝐾 · (abs‘𝐷))))) |
29 | 21, 28 | sylibrd 259 | 1 ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℂcc 11130 + caddc 11135 · cmul 11137 − cmin 11468 ℕ0cn0 12496 ℤcz 12582 abscabs 15207 ∥ cdvds 16224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9459 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-seq 13993 df-exp 14053 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16225 |
This theorem is referenced by: divalglem5 16367 |
Copyright terms: Public domain | W3C validator |