![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
breqtr.1 | ⊢ 𝐴𝑅𝐵 |
breqtr.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
breqtri | ⊢ 𝐴𝑅𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breqtr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | breqtr.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | breq2i 5150 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 𝐴𝑅𝐶) |
4 | 1, 3 | mpbi 229 | 1 ⊢ 𝐴𝑅𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 class class class wbr 5142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 |
This theorem is referenced by: breqtrri 5169 3brtr3i 5171 supsrlem 11128 0lt1 11760 le9lt10 12728 9lt10 12832 hashunlei 14410 sqrt2gt1lt2 15247 trireciplem 15834 cos1bnd 16157 cos2bnd 16158 cos01gt0 16161 sin4lt0 16165 rpnnen2lem3 16186 z4even 16342 gcdaddmlem 16492 dec2dvds 17025 abvtrivd 20713 sincos4thpi 26441 log2cnv 26869 log2ublem2 26872 log2ublem3 26873 log2le1 26875 birthday 26879 harmonicbnd3 26933 lgam1 26989 basellem7 27012 ppiublem1 27128 ppiub 27130 bposlem4 27213 bposlem5 27214 bposlem9 27218 lgsdir2lem2 27252 lgsdir2lem3 27253 0reno 28218 ex-fl 30250 siilem1 30654 normlem5 30917 normlem6 30918 norm-ii-i 30940 norm3adifii 30951 cmm2i 31410 mayetes3i 31532 nmopcoadji 31904 mdoc2i 32229 dmdoc2i 32231 dp2lt10 32601 dp2ltsuc 32603 dplti 32622 sqsscirc1 33503 ballotlem1c 34121 hgt750lem 34277 problem5 35267 circum 35272 bj-pinftyccb 36694 bj-minftyccb 36698 poimirlem25 37112 cntotbnd 37263 3lexlogpow5ineq1 41519 3lexlogpow5ineq2 41520 aks4d1p1p2 41535 aks4d1p1p7 41539 posbezout 41565 aks6d1c7lem1 41646 jm2.23 42411 tr3dom 42952 halffl 44672 wallispi 45452 stirlinglem1 45456 fouriersw 45613 |
Copyright terms: Public domain | W3C validator |