MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2lem2 Structured version   Visualization version   GIF version

Theorem lgsdir2lem2 27252
Description: Lemma for lgsdir2 27256. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdir2lem2.1 (𝐾 ∈ ℤ ∧ 2 ∥ (𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆)))
lgsdir2lem2.2 𝑀 = (𝐾 + 1)
lgsdir2lem2.3 𝑁 = (𝑀 + 1)
lgsdir2lem2.4 𝑁𝑆
Assertion
Ref Expression
lgsdir2lem2 (𝑁 ∈ ℤ ∧ 2 ∥ (𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆)))

Proof of Theorem lgsdir2lem2
StepHypRef Expression
1 lgsdir2lem2.3 . . 3 𝑁 = (𝑀 + 1)
2 lgsdir2lem2.2 . . . . 5 𝑀 = (𝐾 + 1)
3 lgsdir2lem2.1 . . . . . . 7 (𝐾 ∈ ℤ ∧ 2 ∥ (𝐾 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆)))
43simp1i 1137 . . . . . 6 𝐾 ∈ ℤ
5 peano2z 12627 . . . . . 6 (𝐾 ∈ ℤ → (𝐾 + 1) ∈ ℤ)
64, 5ax-mp 5 . . . . 5 (𝐾 + 1) ∈ ℤ
72, 6eqeltri 2825 . . . 4 𝑀 ∈ ℤ
8 peano2z 12627 . . . 4 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
97, 8ax-mp 5 . . 3 (𝑀 + 1) ∈ ℤ
101, 9eqeltri 2825 . 2 𝑁 ∈ ℤ
113simp2i 1138 . . . 4 2 ∥ (𝐾 + 1)
12 2z 12618 . . . . 5 2 ∈ ℤ
13 dvdsadd 16272 . . . . 5 ((2 ∈ ℤ ∧ (𝐾 + 1) ∈ ℤ) → (2 ∥ (𝐾 + 1) ↔ 2 ∥ (2 + (𝐾 + 1))))
1412, 6, 13mp2an 691 . . . 4 (2 ∥ (𝐾 + 1) ↔ 2 ∥ (2 + (𝐾 + 1)))
1511, 14mpbi 229 . . 3 2 ∥ (2 + (𝐾 + 1))
16 zcn 12587 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
174, 16ax-mp 5 . . . . . . . . . 10 𝐾 ∈ ℂ
18 ax-1cn 11190 . . . . . . . . . 10 1 ∈ ℂ
1917, 18addcomi 11429 . . . . . . . . 9 (𝐾 + 1) = (1 + 𝐾)
202, 19eqtri 2756 . . . . . . . 8 𝑀 = (1 + 𝐾)
2120oveq1i 7424 . . . . . . 7 (𝑀 + 1) = ((1 + 𝐾) + 1)
221, 21eqtri 2756 . . . . . 6 𝑁 = ((1 + 𝐾) + 1)
23 df-2 12299 . . . . . . . 8 2 = (1 + 1)
2423oveq1i 7424 . . . . . . 7 (2 + 𝐾) = ((1 + 1) + 𝐾)
2518, 17, 18add32i 11461 . . . . . . 7 ((1 + 𝐾) + 1) = ((1 + 1) + 𝐾)
2624, 25eqtr4i 2759 . . . . . 6 (2 + 𝐾) = ((1 + 𝐾) + 1)
2722, 26eqtr4i 2759 . . . . 5 𝑁 = (2 + 𝐾)
2827oveq1i 7424 . . . 4 (𝑁 + 1) = ((2 + 𝐾) + 1)
29 2cn 12311 . . . . 5 2 ∈ ℂ
3029, 17, 18addassi 11248 . . . 4 ((2 + 𝐾) + 1) = (2 + (𝐾 + 1))
3128, 30eqtri 2756 . . 3 (𝑁 + 1) = (2 + (𝐾 + 1))
3215, 31breqtrri 5169 . 2 2 ∥ (𝑁 + 1)
33 elfzuz2 13532 . . . . 5 ((𝐴 mod 8) ∈ (0...𝑁) → 𝑁 ∈ (ℤ‘0))
34 fzm1 13607 . . . . 5 (𝑁 ∈ (ℤ‘0) → ((𝐴 mod 8) ∈ (0...𝑁) ↔ ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁)))
3533, 34syl 17 . . . 4 ((𝐴 mod 8) ∈ (0...𝑁) → ((𝐴 mod 8) ∈ (0...𝑁) ↔ ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁)))
3635ibi 267 . . 3 ((𝐴 mod 8) ∈ (0...𝑁) → ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁))
37 elfzuz2 13532 . . . . . . . 8 ((𝐴 mod 8) ∈ (0...𝑀) → 𝑀 ∈ (ℤ‘0))
38 fzm1 13607 . . . . . . . 8 (𝑀 ∈ (ℤ‘0) → ((𝐴 mod 8) ∈ (0...𝑀) ↔ ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀)))
3937, 38syl 17 . . . . . . 7 ((𝐴 mod 8) ∈ (0...𝑀) → ((𝐴 mod 8) ∈ (0...𝑀) ↔ ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀)))
4039ibi 267 . . . . . 6 ((𝐴 mod 8) ∈ (0...𝑀) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀))
41 zcn 12587 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
427, 41ax-mp 5 . . . . . . . 8 𝑀 ∈ ℂ
4342, 18, 1mvrraddi 11501 . . . . . . 7 (𝑁 − 1) = 𝑀
4443oveq2i 7425 . . . . . 6 (0...(𝑁 − 1)) = (0...𝑀)
4540, 44eleq2s 2847 . . . . 5 ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀))
4617, 18, 2mvrraddi 11501 . . . . . . . . 9 (𝑀 − 1) = 𝐾
4746oveq2i 7425 . . . . . . . 8 (0...(𝑀 − 1)) = (0...𝐾)
4847eleq2i 2821 . . . . . . 7 ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ↔ (𝐴 mod 8) ∈ (0...𝐾))
493simp3i 1139 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝐾) → (𝐴 mod 8) ∈ 𝑆))
5048, 49biimtrid 241 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...(𝑀 − 1)) → (𝐴 mod 8) ∈ 𝑆))
51 2nn 12309 . . . . . . . . . . 11 2 ∈ ℕ
52 8nn 12331 . . . . . . . . . . 11 8 ∈ ℕ
53 4z 12620 . . . . . . . . . . . . . 14 4 ∈ ℤ
54 dvdsmul2 16249 . . . . . . . . . . . . . 14 ((4 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (4 · 2))
5553, 12, 54mp2an 691 . . . . . . . . . . . . 13 2 ∥ (4 · 2)
56 4t2e8 12404 . . . . . . . . . . . . 13 (4 · 2) = 8
5755, 56breqtri 5167 . . . . . . . . . . . 12 2 ∥ 8
58 dvdsmod 16299 . . . . . . . . . . . 12 (((2 ∈ ℕ ∧ 8 ∈ ℕ ∧ 𝐴 ∈ ℤ) ∧ 2 ∥ 8) → (2 ∥ (𝐴 mod 8) ↔ 2 ∥ 𝐴))
5957, 58mpan2 690 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 8 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (2 ∥ (𝐴 mod 8) ↔ 2 ∥ 𝐴))
6051, 52, 59mp3an12 1448 . . . . . . . . . 10 (𝐴 ∈ ℤ → (2 ∥ (𝐴 mod 8) ↔ 2 ∥ 𝐴))
6160notbid 318 . . . . . . . . 9 (𝐴 ∈ ℤ → (¬ 2 ∥ (𝐴 mod 8) ↔ ¬ 2 ∥ 𝐴))
6261biimpar 477 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ¬ 2 ∥ (𝐴 mod 8))
6311, 2breqtrri 5169 . . . . . . . . 9 2 ∥ 𝑀
64 id 22 . . . . . . . . 9 ((𝐴 mod 8) = 𝑀 → (𝐴 mod 8) = 𝑀)
6563, 64breqtrrid 5180 . . . . . . . 8 ((𝐴 mod 8) = 𝑀 → 2 ∥ (𝐴 mod 8))
6662, 65nsyl 140 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ¬ (𝐴 mod 8) = 𝑀)
6766pm2.21d 121 . . . . . 6 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) = 𝑀 → (𝐴 mod 8) ∈ 𝑆))
6850, 67jaod 858 . . . . 5 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (((𝐴 mod 8) ∈ (0...(𝑀 − 1)) ∨ (𝐴 mod 8) = 𝑀) → (𝐴 mod 8) ∈ 𝑆))
6945, 68syl5 34 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...(𝑁 − 1)) → (𝐴 mod 8) ∈ 𝑆))
70 lgsdir2lem2.4 . . . . . 6 𝑁𝑆
71 eleq1 2817 . . . . . 6 ((𝐴 mod 8) = 𝑁 → ((𝐴 mod 8) ∈ 𝑆𝑁𝑆))
7270, 71mpbiri 258 . . . . 5 ((𝐴 mod 8) = 𝑁 → (𝐴 mod 8) ∈ 𝑆)
7372a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) = 𝑁 → (𝐴 mod 8) ∈ 𝑆))
7469, 73jaod 858 . . 3 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → (((𝐴 mod 8) ∈ (0...(𝑁 − 1)) ∨ (𝐴 mod 8) = 𝑁) → (𝐴 mod 8) ∈ 𝑆))
7536, 74syl5 34 . 2 ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆))
7610, 32, 753pm3.2i 1337 1 (𝑁 ∈ ℤ ∧ 2 ∥ (𝑁 + 1) ∧ ((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) → ((𝐴 mod 8) ∈ (0...𝑁) → (𝐴 mod 8) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5142  cfv 6542  (class class class)co 7414  cc 11130  0cc0 11132  1c1 11133   + caddc 11135   · cmul 11137  cmin 11468  cn 12236  2c2 12291  4c4 12293  8c8 12297  cz 12582  cuz 12846  ...cfz 13510   mod cmo 13860  cdvds 16224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-sup 9459  df-inf 9460  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-n0 12497  df-z 12583  df-uz 12847  df-rp 13001  df-fz 13511  df-fl 13783  df-mod 13861  df-dvds 16225
This theorem is referenced by:  lgsdir2lem3  27253
  Copyright terms: Public domain W3C validator