![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biantrur | Structured version Visualization version GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
biantrur.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantrur | ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrur.1 | . . 3 ⊢ 𝜑 | |
2 | 1 | biantru 529 | . 2 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
3 | 2 | biancomi 462 | 1 ⊢ (𝜓 ↔ (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mpbiran 708 cases 1041 truan 1545 2sb5rf 2466 euae 2650 rexv 3495 reuv 3496 rmov 3497 rabab 3498 euxfrw 3714 euxfr 3716 euind 3717 dfdif3 4110 ddif 4132 nssinpss 4252 nsspssun 4253 notabw 4299 vss 4439 reuprg0 4702 reuprg 4703 difsnpss 4806 sspr 4832 sstp 4833 disjprgw 5137 disjprg 5138 mptv 5258 reusv2lem5 5396 oteqex2 5495 dfid4 5571 intirr 6118 xpcan 6174 resssxp 6268 fvopab6 7033 fnressn 7161 riotav 7375 mpov 7526 sorpss 7727 opabn1stprc 8056 fparlem2 8112 fnsuppres 8189 brtpos0 8232 naddrid 8697 sup0riota 9482 genpass 11026 nnwos 12923 hashbclem 14437 ccatlcan 14694 clim0 15476 gcd0id 16487 isdomn3 21241 pjfval2 21636 mat1dimbas 22367 pmatcollpw2lem 22672 isbasis3g 22845 opnssneib 23012 ssidcn 23152 qtopcld 23610 mdegleb 25993 vieta1 26240 lgsne0 27261 axpasch 28745 0wlk 29919 0clwlk 29933 shlesb1i 31189 chnlei 31288 pjneli 31526 cvexchlem 32171 dmdbr5ati 32225 elimifd 32327 lmxrge0 33543 cntnevol 33837 bnj110 34479 goeleq12bg 34949 fmlafvel 34985 elpotr 35367 dfbigcup2 35485 bj-rexvw 36348 bj-rababw 36349 bj-brab2a1 36618 finxpreclem4 36863 wl-cases2-dnf 36969 wl-euae 36974 wl-dfclab 37052 cnambfre 37130 triantru3 37688 lub0N 38650 glb0N 38654 cvlsupr3 38805 ifpdfor2 42863 ifpdfor 42867 ifpim1 42871 ifpid2 42873 ifpim2 42874 ifpid2g 42895 ifpid1g 42896 ifpim23g 42897 ifpim1g 42903 ifpimimb 42906 rp-isfinite6 42920 rababg 42976 relnonrel 42989 dffrege115 43380 funressnfv 46397 dfnelbr2 46625 |
Copyright terms: Public domain | W3C validator |