![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biantru | Structured version Visualization version GIF version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
biantru.1 | ⊢ 𝜑 |
Ref | Expression |
---|---|
biantru | ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantru.1 | . 2 ⊢ 𝜑 | |
2 | iba 527 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝜓 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: biantrur 530 pm4.71 557 eu6lem 2562 eu6 2563 issetlem 2808 rextru 3072 rexcom4b 3499 eueq 3701 ssrabeq 4078 nsspssun 4253 disjpss 4456 reusngf 4672 reuprg0 4702 reuprg 4703 pr1eqbg 4853 disjprgw 5137 disjprg 5138 ax6vsep 5297 pwun 5568 dfid3 5573 elvv 5746 elvvv 5747 dfres3 5984 resopab 6032 xpcan2 6175 funfn 6577 dffn2 6718 dffn3 6729 dffn4 6811 fsn 7138 sucexb 7801 fparlem1 8111 wfrlem8OLD 8330 ixp0x 8936 ac6sfi 9303 fiint 9340 rankc1 9885 cf0 10266 ccatrcan 14693 prmreclem2 16877 subislly 23372 ovoliunlem1 25418 plyun0 26118 dmscut 27731 tgjustf 28264 ercgrg 28308 0wlk 29913 0trl 29919 0pth 29922 0cycl 29931 nmoolb 30568 hlimreui 31036 nmoplb 31704 nmfnlb 31721 dmdbr5ati 32219 disjunsn 32369 fsumcvg4 33487 ind1a 33574 issibf 33889 bnj1174 34570 derang0 34715 subfacp1lem6 34731 satfdm 34915 bj-denoteslem 36284 bj-rexcom4bv 36296 bj-rexcom4b 36297 bj-tagex 36402 bj-dfid2ALT 36480 bj-restuni 36512 rdgeqoa 36785 ftc1anclem5 37105 disjressuc2 37797 eqvrelcoss3 38027 dfeldisj5 38130 dibord 40569 ifpnot 42823 ifpdfxor 42840 ifpid1g 42847 ifpim1g 42854 ifpimimb 42857 relopabVD 44263 euabsneu 46333 rmotru 47798 reutru 47799 |
Copyright terms: Public domain | W3C validator |