![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-tagex | Structured version Visualization version GIF version |
Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-tagex | ⊢ (𝐴 ∈ V ↔ tag 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snglex 36452 | . . 3 ⊢ (𝐴 ∈ V ↔ sngl 𝐴 ∈ V) | |
2 | p0ex 5384 | . . . 4 ⊢ {∅} ∈ V | |
3 | 2 | biantru 529 | . . 3 ⊢ (sngl 𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V)) |
4 | 1, 3 | bitri 275 | . 2 ⊢ (𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V)) |
5 | unexb 7750 | . 2 ⊢ ((sngl 𝐴 ∈ V ∧ {∅} ∈ V) ↔ (sngl 𝐴 ∪ {∅}) ∈ V) | |
6 | df-bj-tag 36454 | . . . 4 ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) | |
7 | 6 | eqcomi 2737 | . . 3 ⊢ (sngl 𝐴 ∪ {∅}) = tag 𝐴 |
8 | 7 | eleq1i 2820 | . 2 ⊢ ((sngl 𝐴 ∪ {∅}) ∈ V ↔ tag 𝐴 ∈ V) |
9 | 4, 5, 8 | 3bitri 297 | 1 ⊢ (𝐴 ∈ V ↔ tag 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2099 Vcvv 3471 ∪ cun 3945 ∅c0 4323 {csn 4629 sngl bj-csngl 36444 tag bj-ctag 36453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-pw 4605 df-sn 4630 df-pr 4632 df-uni 4909 df-bj-sngl 36445 df-bj-tag 36454 |
This theorem is referenced by: bj-xtagex 36468 |
Copyright terms: Public domain | W3C validator |