Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-tagex Structured version   Visualization version   GIF version

Theorem bj-tagex 36466
Description: A class is a set if and only if its tagging is a set. (Contributed by BJ, 6-Oct-2018.)
Assertion
Ref Expression
bj-tagex (𝐴 ∈ V ↔ tag 𝐴 ∈ V)

Proof of Theorem bj-tagex
StepHypRef Expression
1 bj-snglex 36452 . . 3 (𝐴 ∈ V ↔ sngl 𝐴 ∈ V)
2 p0ex 5384 . . . 4 {∅} ∈ V
32biantru 529 . . 3 (sngl 𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V))
41, 3bitri 275 . 2 (𝐴 ∈ V ↔ (sngl 𝐴 ∈ V ∧ {∅} ∈ V))
5 unexb 7750 . 2 ((sngl 𝐴 ∈ V ∧ {∅} ∈ V) ↔ (sngl 𝐴 ∪ {∅}) ∈ V)
6 df-bj-tag 36454 . . . 4 tag 𝐴 = (sngl 𝐴 ∪ {∅})
76eqcomi 2737 . . 3 (sngl 𝐴 ∪ {∅}) = tag 𝐴
87eleq1i 2820 . 2 ((sngl 𝐴 ∪ {∅}) ∈ V ↔ tag 𝐴 ∈ V)
94, 5, 83bitri 297 1 (𝐴 ∈ V ↔ tag 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wcel 2099  Vcvv 3471  cun 3945  c0 4323  {csn 4629  sngl bj-csngl 36444  tag bj-ctag 36453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-pw 4605  df-sn 4630  df-pr 4632  df-uni 4909  df-bj-sngl 36445  df-bj-tag 36454
This theorem is referenced by:  bj-xtagex  36468
  Copyright terms: Public domain W3C validator