![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-euae | Structured version Visualization version GIF version |
Description: Two ways to express "exactly one thing exists" . (Contributed by Wolf Lammen, 5-Mar-2023.) |
Ref | Expression |
---|---|
wl-euae | ⊢ (∃!𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2559 | . 2 ⊢ (∃!𝑥⊤ ↔ (∃𝑥⊤ ∧ ∃*𝑥⊤)) | |
2 | extru 1972 | . . 3 ⊢ ∃𝑥⊤ | |
3 | 2 | biantrur 530 | . 2 ⊢ (∃*𝑥⊤ ↔ (∃𝑥⊤ ∧ ∃*𝑥⊤)) |
4 | wl-moae 36978 | . 2 ⊢ (∃*𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦) | |
5 | 1, 3, 4 | 3bitr2i 299 | 1 ⊢ (∃!𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wal 1532 ⊤wtru 1535 ∃wex 1774 ∃*wmo 2528 ∃!weu 2558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-mo 2530 df-eu 2559 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |