![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > bcs2 | Structured version Visualization version GIF version |
Description: Corollary of the Bunjakovaskij-Cauchy-Schwarz inequality bcsiHIL 30977. (Contributed by NM, 24-May-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bcs2 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝐴 ·ih 𝐵)) ≤ (normℎ‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hicl 30877 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) | |
2 | 1 | abscld 15407 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (abs‘(𝐴 ·ih 𝐵)) ∈ ℝ) |
3 | 2 | 3adant3 1130 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝐴 ·ih 𝐵)) ∈ ℝ) |
4 | normcl 30922 | . . . 4 ⊢ (𝐴 ∈ ℋ → (normℎ‘𝐴) ∈ ℝ) | |
5 | normcl 30922 | . . . 4 ⊢ (𝐵 ∈ ℋ → (normℎ‘𝐵) ∈ ℝ) | |
6 | remulcl 11215 | . . . 4 ⊢ (((normℎ‘𝐴) ∈ ℝ ∧ (normℎ‘𝐵) ∈ ℝ) → ((normℎ‘𝐴) · (normℎ‘𝐵)) ∈ ℝ) | |
7 | 4, 5, 6 | syl2an 595 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((normℎ‘𝐴) · (normℎ‘𝐵)) ∈ ℝ) |
8 | 7 | 3adant3 1130 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → ((normℎ‘𝐴) · (normℎ‘𝐵)) ∈ ℝ) |
9 | 5 | 3ad2ant2 1132 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normℎ‘𝐵) ∈ ℝ) |
10 | bcs 30978 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (abs‘(𝐴 ·ih 𝐵)) ≤ ((normℎ‘𝐴) · (normℎ‘𝐵))) | |
11 | 10 | 3adant3 1130 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝐴 ·ih 𝐵)) ≤ ((normℎ‘𝐴) · (normℎ‘𝐵))) |
12 | 4 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normℎ‘𝐴) ∈ ℝ) |
13 | normge0 30923 | . . . . . 6 ⊢ (𝐵 ∈ ℋ → 0 ≤ (normℎ‘𝐵)) | |
14 | 13 | 3ad2ant2 1132 | . . . . 5 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → 0 ≤ (normℎ‘𝐵)) |
15 | 9, 14 | jca 511 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → ((normℎ‘𝐵) ∈ ℝ ∧ 0 ≤ (normℎ‘𝐵))) |
16 | simp3 1136 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (normℎ‘𝐴) ≤ 1) | |
17 | 1re 11236 | . . . . 5 ⊢ 1 ∈ ℝ | |
18 | lemul1a 12090 | . . . . 5 ⊢ ((((normℎ‘𝐴) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((normℎ‘𝐵) ∈ ℝ ∧ 0 ≤ (normℎ‘𝐵))) ∧ (normℎ‘𝐴) ≤ 1) → ((normℎ‘𝐴) · (normℎ‘𝐵)) ≤ (1 · (normℎ‘𝐵))) | |
19 | 17, 18 | mp3anl2 1453 | . . . 4 ⊢ ((((normℎ‘𝐴) ∈ ℝ ∧ ((normℎ‘𝐵) ∈ ℝ ∧ 0 ≤ (normℎ‘𝐵))) ∧ (normℎ‘𝐴) ≤ 1) → ((normℎ‘𝐴) · (normℎ‘𝐵)) ≤ (1 · (normℎ‘𝐵))) |
20 | 12, 15, 16, 19 | syl21anc 837 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → ((normℎ‘𝐴) · (normℎ‘𝐵)) ≤ (1 · (normℎ‘𝐵))) |
21 | 5 | recnd 11264 | . . . . 5 ⊢ (𝐵 ∈ ℋ → (normℎ‘𝐵) ∈ ℂ) |
22 | 21 | mullidd 11254 | . . . 4 ⊢ (𝐵 ∈ ℋ → (1 · (normℎ‘𝐵)) = (normℎ‘𝐵)) |
23 | 22 | 3ad2ant2 1132 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (1 · (normℎ‘𝐵)) = (normℎ‘𝐵)) |
24 | 20, 23 | breqtrd 5168 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → ((normℎ‘𝐴) · (normℎ‘𝐵)) ≤ (normℎ‘𝐵)) |
25 | 3, 8, 9, 11, 24 | letrd 11393 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (normℎ‘𝐴) ≤ 1) → (abs‘(𝐴 ·ih 𝐵)) ≤ (normℎ‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℝcr 11129 0cc0 11130 1c1 11131 · cmul 11135 ≤ cle 11271 abscabs 15205 ℋchba 30716 ·ih csp 30719 normℎcno 30720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9656 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-pre-sup 11208 ax-addf 11209 ax-mulf 11210 ax-hilex 30796 ax-hfvadd 30797 ax-hvcom 30798 ax-hvass 30799 ax-hv0cl 30800 ax-hvaddid 30801 ax-hfvmul 30802 ax-hvmulid 30803 ax-hvmulass 30804 ax-hvdistr1 30805 ax-hvdistr2 30806 ax-hvmul0 30807 ax-hfi 30876 ax-his1 30879 ax-his2 30880 ax-his3 30881 ax-his4 30882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8838 df-ixp 8908 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-fi 9426 df-sup 9457 df-inf 9458 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-q 12955 df-rp 12999 df-xneg 13116 df-xadd 13117 df-xmul 13118 df-ioo 13352 df-icc 13355 df-fz 13509 df-fzo 13652 df-seq 13991 df-exp 14051 df-hash 14314 df-cj 15070 df-re 15071 df-im 15072 df-sqrt 15206 df-abs 15207 df-clim 15456 df-sum 15657 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-starv 17239 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-hom 17248 df-cco 17249 df-rest 17395 df-topn 17396 df-0g 17414 df-gsum 17415 df-topgen 17416 df-pt 17417 df-prds 17420 df-xrs 17475 df-qtop 17480 df-imas 17481 df-xps 17483 df-mre 17557 df-mrc 17558 df-acs 17560 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-submnd 18732 df-mulg 19015 df-cntz 19259 df-cmn 19728 df-psmet 21258 df-xmet 21259 df-met 21260 df-bl 21261 df-mopn 21262 df-cnfld 21267 df-top 22783 df-topon 22800 df-topsp 22822 df-bases 22836 df-cld 22910 df-ntr 22911 df-cls 22912 df-cn 23118 df-cnp 23119 df-t1 23205 df-haus 23206 df-tx 23453 df-hmeo 23646 df-xms 24213 df-ms 24214 df-tms 24215 df-grpo 30290 df-gid 30291 df-ginv 30292 df-gdiv 30293 df-ablo 30342 df-vc 30356 df-nv 30389 df-va 30392 df-ba 30393 df-sm 30394 df-0v 30395 df-vs 30396 df-nmcv 30397 df-ims 30398 df-dip 30498 df-ph 30610 df-hnorm 30765 df-hba 30766 df-hvsub 30768 |
This theorem is referenced by: bcs3 30980 branmfn 31902 |
Copyright terms: Public domain | W3C validator |