MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsup0 Structured version   Visualization version   GIF version

Theorem xrsup0 13340
Description: The supremum of an empty set under the extended reals is minus infinity. (Contributed by NM, 15-Oct-2005.)
Assertion
Ref Expression
xrsup0 sup(∅, ℝ*, < ) = -∞

Proof of Theorem xrsup0
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ss 4398 . 2 ∅ ⊆ ℝ*
2 mnfxr 11307 . 2 -∞ ∈ ℝ*
3 ral0 4514 . 2 𝑦 ∈ ∅ ¬ -∞ < 𝑦
4 rexr 11296 . . . . 5 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
5 nltmnf 13147 . . . . 5 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
64, 5syl 17 . . . 4 (𝑦 ∈ ℝ → ¬ 𝑦 < -∞)
76pm2.21d 121 . . 3 (𝑦 ∈ ℝ → (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))
87rgen 3059 . 2 𝑦 ∈ ℝ (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)
9 supxr 13330 . 2 (((∅ ⊆ ℝ* ∧ -∞ ∈ ℝ*) ∧ (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))) → sup(∅, ℝ*, < ) = -∞)
101, 2, 3, 8, 9mp4an 691 1 sup(∅, ℝ*, < ) = -∞
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2098  wral 3057  wrex 3066  wss 3947  c0 4324   class class class wbr 5150  supcsup 9469  cr 11143  -∞cmnf 11282  *cxr 11283   < clt 11284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-po 5592  df-so 5593  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9471  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483
This theorem is referenced by:  mdegcl  26023  mdeg0  26024  suplesup  44723  supxrltinfxr  44833  supminfxr  44848  limsup0  45084
  Copyright terms: Public domain W3C validator