![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsup0 | Structured version Visualization version GIF version |
Description: The supremum of an empty set under the extended reals is minus infinity. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
xrsup0 | ⊢ sup(∅, ℝ*, < ) = -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4398 | . 2 ⊢ ∅ ⊆ ℝ* | |
2 | mnfxr 11307 | . 2 ⊢ -∞ ∈ ℝ* | |
3 | ral0 4514 | . 2 ⊢ ∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 | |
4 | rexr 11296 | . . . . 5 ⊢ (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*) | |
5 | nltmnf 13147 | . . . . 5 ⊢ (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑦 ∈ ℝ → ¬ 𝑦 < -∞) |
7 | 6 | pm2.21d 121 | . . 3 ⊢ (𝑦 ∈ ℝ → (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧)) |
8 | 7 | rgen 3059 | . 2 ⊢ ∀𝑦 ∈ ℝ (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧) |
9 | supxr 13330 | . 2 ⊢ (((∅ ⊆ ℝ* ∧ -∞ ∈ ℝ*) ∧ (∀𝑦 ∈ ∅ ¬ -∞ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < -∞ → ∃𝑧 ∈ ∅ 𝑦 < 𝑧))) → sup(∅, ℝ*, < ) = -∞) | |
10 | 1, 2, 3, 8, 9 | mp4an 691 | 1 ⊢ sup(∅, ℝ*, < ) = -∞ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ∈ wcel 2098 ∀wral 3057 ∃wrex 3066 ⊆ wss 3947 ∅c0 4324 class class class wbr 5150 supcsup 9469 ℝcr 11143 -∞cmnf 11282 ℝ*cxr 11283 < clt 11284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-po 5592 df-so 5593 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-sup 9471 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 |
This theorem is referenced by: mdegcl 26023 mdeg0 26024 suplesup 44723 supxrltinfxr 44833 supminfxr 44848 limsup0 45084 |
Copyright terms: Public domain | W3C validator |