![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ral0 | Structured version Visualization version GIF version |
Description: Vacuous universal quantification is always true. (Contributed by NM, 20-Oct-2005.) Avoid df-clel 2806, ax-8 2101. (Revised by Gino Giotto, 2-Sep-2024.) |
Ref | Expression |
---|---|
ral0 | ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . 2 ⊢ ∅ = ∅ | |
2 | rzal 4509 | . 2 ⊢ (∅ = ∅ → ∀𝑥 ∈ ∅ 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∀𝑥 ∈ ∅ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∀wral 3058 ∅c0 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-ral 3059 df-dif 3950 df-nul 4324 |
This theorem is referenced by: int0 4965 0iin 5067 po0 5607 so0 5626 mpt0 6697 naddrid 8704 ixp0x 8945 ac6sfi 9312 sup0riota 9489 infpssrlem4 10330 axdc3lem4 10477 0tsk 10779 uzsupss 12955 xrsupsslem 13319 xrinfmsslem 13320 xrsup0 13335 fsuppmapnn0fiubex 13990 swrd0 14641 swrdspsleq 14648 repswsymballbi 14763 cshw1 14805 rexfiuz 15327 lcmf0 16605 2prm 16663 0ssc 17823 0subcat 17824 drsdirfi 18297 0pos 18313 0posOLD 18314 mrelatglb0 18553 sgrp0b 18688 ga0 19249 psgnunilem3 19451 lbsexg 21052 ocv0 21609 mdetunilem9 22535 imasdsf1olem 24292 prdsxmslem2 24451 lebnumlem3 24902 cniccbdd 25403 ovolicc2lem4 25462 c1lip1 25943 ulm0 26340 precsexlem9 28126 istrkg2ld 28277 nbgr0vtx 29182 nbgr1vtx 29184 cplgr0 29251 cplgr1v 29256 wwlksn0s 29685 clwwlkn 29849 clwwlkn1 29864 0ewlk 29937 1ewlk 29938 0wlk 29939 0conngr 30015 frgr0v 30085 frgr0 30088 frgr1v 30094 1vwmgr 30099 chocnul 31151 locfinref 33442 esumnul 33667 derang0 34779 unt0 35305 fdc 37218 lub0N 38661 glb0N 38665 0psubN 39222 sticksstones11 41628 cantnfresb 42753 safesnsupfilb 42848 nla0002 42854 nla0003 42855 iso0 43744 fnchoice 44391 eliuniincex 44475 eliincex 44476 limcdm0 45006 2ffzoeq 46708 iccpartiltu 46762 iccpartigtl 46763 0mgm 47228 linds0 47533 0thincg 48056 |
Copyright terms: Public domain | W3C validator |