MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcbas Structured version   Visualization version   GIF version

Theorem xpcbas 18162
Description: Set of objects of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017.)
Hypotheses
Ref Expression
xpcbas.t 𝑇 = (𝐶 ×c 𝐷)
xpcbas.x 𝑋 = (Base‘𝐶)
xpcbas.y 𝑌 = (Base‘𝐷)
Assertion
Ref Expression
xpcbas (𝑋 × 𝑌) = (Base‘𝑇)

Proof of Theorem xpcbas
Dummy variables 𝑓 𝑔 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpcbas.t . . . 4 𝑇 = (𝐶 ×c 𝐷)
2 xpcbas.x . . . 4 𝑋 = (Base‘𝐶)
3 xpcbas.y . . . 4 𝑌 = (Base‘𝐷)
4 eqid 2727 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
5 eqid 2727 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
6 eqid 2727 . . . 4 (comp‘𝐶) = (comp‘𝐶)
7 eqid 2727 . . . 4 (comp‘𝐷) = (comp‘𝐷)
8 simpl 482 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐶 ∈ V)
9 simpr 484 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝐷 ∈ V)
10 eqidd 2728 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (𝑋 × 𝑌))
11 eqidd 2728 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣)))) = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣)))))
12 eqidd 2728 . . . 4 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐶)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩)) = (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐶)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩)))
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12xpcval 18161 . . 3 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = {⟨(Base‘ndx), (𝑋 × 𝑌)⟩, ⟨(Hom ‘ndx), (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))⟩, ⟨(comp‘ndx), (𝑥 ∈ ((𝑋 × 𝑌) × (𝑋 × 𝑌)), 𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑔 ∈ ((2nd𝑥)(𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))𝑦), 𝑓 ∈ ((𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ (((1st𝑢)(Hom ‘𝐶)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝐷)(2nd𝑣))))‘𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝐶)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝐷)(2nd𝑦))(2nd𝑓))⟩))⟩})
142fvexi 6905 . . . . 5 𝑋 ∈ V
153fvexi 6905 . . . . 5 𝑌 ∈ V
1614, 15xpex 7749 . . . 4 (𝑋 × 𝑌) ∈ V
1716a1i 11 . . 3 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) ∈ V)
1813, 17estrreslem1 18120 . 2 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (Base‘𝑇))
19 base0 17178 . . 3 ∅ = (Base‘∅)
20 fvprc 6883 . . . . . 6 𝐶 ∈ V → (Base‘𝐶) = ∅)
212, 20eqtrid 2779 . . . . 5 𝐶 ∈ V → 𝑋 = ∅)
22 fvprc 6883 . . . . . 6 𝐷 ∈ V → (Base‘𝐷) = ∅)
233, 22eqtrid 2779 . . . . 5 𝐷 ∈ V → 𝑌 = ∅)
2421, 23orim12i 907 . . . 4 ((¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V) → (𝑋 = ∅ ∨ 𝑌 = ∅))
25 ianor 980 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐷 ∈ V))
26 xpeq0 6158 . . . 4 ((𝑋 × 𝑌) = ∅ ↔ (𝑋 = ∅ ∨ 𝑌 = ∅))
2724, 25, 263imtr4i 292 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = ∅)
28 fnxpc 18160 . . . . . . 7 ×c Fn (V × V)
29 fndm 6651 . . . . . . 7 ( ×c Fn (V × V) → dom ×c = (V × V))
3028, 29ax-mp 5 . . . . . 6 dom ×c = (V × V)
3130ndmov 7599 . . . . 5 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝐶 ×c 𝐷) = ∅)
321, 31eqtrid 2779 . . . 4 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → 𝑇 = ∅)
3332fveq2d 6895 . . 3 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (Base‘𝑇) = (Base‘∅))
3419, 27, 333eqtr4a 2793 . 2 (¬ (𝐶 ∈ V ∧ 𝐷 ∈ V) → (𝑋 × 𝑌) = (Base‘𝑇))
3518, 34pm2.61i 182 1 (𝑋 × 𝑌) = (Base‘𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 846   = wceq 1534  wcel 2099  Vcvv 3469  c0 4318  cop 4630   × cxp 5670  dom cdm 5672   Fn wfn 6537  cfv 6542  (class class class)co 7414  cmpo 7416  1st c1st 7985  2nd c2nd 7986  Basecbs 17173  Hom chom 17237  compcco 17238   ×c cxpc 18152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-slot 17144  df-ndx 17156  df-base 17174  df-hom 17250  df-cco 17251  df-xpc 18156
This theorem is referenced by:  xpchomfval  18163  xpccofval  18166  xpchom2  18170  xpcco2  18171  xpccatid  18172  1stfval  18175  2ndfval  18178  1stfcl  18181  2ndfcl  18182  prfcl  18187  prf1st  18188  prf2nd  18189  1st2ndprf  18190  catcxpccl  18191  catcxpcclOLD  18192  xpcpropd  18193  evlfcl  18207  curf1cl  18213  curf2cl  18216  curfcl  18217  uncf1  18221  uncf2  18222  uncfcurf  18224  diag11  18228  diag12  18229  diag2  18230  curf2ndf  18232  hofcl  18244  yonedalem21  18258  yonedalem22  18263  yonedalem3b  18264  yonedalem3  18265  yonedainv  18266  yonffthlem  18267
  Copyright terms: Public domain W3C validator