![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtocldf | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
vtocld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
vtocld.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
vtocld.3 | ⊢ (𝜑 → 𝜓) |
vtocldf.4 | ⊢ Ⅎ𝑥𝜑 |
vtocldf.5 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
vtocldf.6 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
Ref | Expression |
---|---|
vtocldf | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocldf.5 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
2 | vtocldf.6 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
3 | vtocldf.4 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
4 | vtocld.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
5 | 4 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
6 | 3, 5 | alrimi 2199 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
7 | vtocld.3 | . . 3 ⊢ (𝜑 → 𝜓) | |
8 | 3, 7 | alrimi 2199 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) |
9 | vtocld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
10 | vtoclgft 3536 | . 2 ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜒) ∧ (∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) ∧ ∀𝑥𝜓) ∧ 𝐴 ∈ 𝑉) → 𝜒) | |
11 | 1, 2, 6, 8, 9, 10 | syl221anc 1379 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 Ⅎwnfc 2878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-v 3471 |
This theorem is referenced by: vtocldOLD 3544 iota2df 6529 riotasv2d 38418 |
Copyright terms: Public domain | W3C validator |