![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimi | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90, see 19.21 2193. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
alrimi.1 | ⊢ Ⅎ𝑥𝜑 |
alrimi.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimi | ⊢ (𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimi.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2181 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | alrimi.2 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | alrimih 1819 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1532 Ⅎwnf 1778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-12 2164 |
This theorem depends on definitions: df-bi 206 df-ex 1775 df-nf 1779 |
This theorem is referenced by: sbimd 2230 sbbid 2231 nf5d 2273 axc4i 2310 19.12 2315 nfsbd 2516 mobid 2539 mo3 2553 eubid 2576 2moexv 2618 eupicka 2625 2moex 2631 2mo 2639 abbid 2798 nfcd 2886 nfabdwOLD 2922 ceqsalgALT 3504 ceqsexOLD 3520 vtocldf 3542 rspcdf 3594 elrab3t 3679 morex 3712 sbciedf 3818 csbiebt 3919 csbiedf 3920 ssrd 3983 eqrd 3997 invdisj 5126 zfrepclf 5288 eusv2nf 5389 ssopab2bw 5543 ssopab2b 5545 imadif 6631 eusvobj1 7407 ssoprab2b 7483 eqoprab2bw 7484 ovmpodxf 7565 axrepnd 10609 axunnd 10611 axpownd 10616 axregndlem1 10617 axacndlem1 10622 axacndlem2 10623 axacndlem3 10624 axacndlem4 10625 axacndlem5 10626 axacnd 10627 mreexexd 17619 acsmapd 18537 isch3 31038 ssrelf 32388 eqrelrd2 32389 esumeq12dvaf 33586 bnj1366 34396 bnj571 34473 bnj964 34510 iota5f 35254 bj-hbext 36123 bj-nfext 36125 wl-mo3t 36978 wl-ax11-lem3 36989 cover2 37123 alrimii 37527 mpobi123f 37570 mptbi12f 37574 ss2iundf 43012 pm11.57 43749 pm11.59 43751 tratrb 43898 hbexg 43918 e2ebindALT 44291 mpteq1dfOLD 44534 mpteq12daOLD 44541 dvnmul 45254 stoweidlem34 45345 sge0fodjrnlem 45727 pimrecltpos 46019 pimrecltneg 46035 smfaddlem1 46074 smfresal 46099 smfinflem 46128 smfinfmpt 46130 ichnfim 46727 ovmpordxf 47325 setrec1lem4 48044 |
Copyright terms: Public domain | W3C validator |