![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniopn | Structured version Visualization version GIF version |
Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.) |
Ref | Expression |
---|---|
uniopn | ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istopg 22790 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝐽 ∈ Top ↔ (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽))) | |
2 | 1 | ibi 267 | . . . 4 ⊢ (𝐽 ∈ Top → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ∧ ∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 (𝑥 ∩ 𝑦) ∈ 𝐽)) |
3 | 2 | simpld 494 | . . 3 ⊢ (𝐽 ∈ Top → ∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽)) |
4 | elpw2g 5340 | . . . . . . . 8 ⊢ (𝐽 ∈ Top → (𝐴 ∈ 𝒫 𝐽 ↔ 𝐴 ⊆ 𝐽)) | |
5 | 4 | biimpar 477 | . . . . . . 7 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → 𝐴 ∈ 𝒫 𝐽) |
6 | sseq1 4003 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐽 ↔ 𝐴 ⊆ 𝐽)) | |
7 | unieq 4914 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
8 | 7 | eleq1d 2814 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (∪ 𝑥 ∈ 𝐽 ↔ ∪ 𝐴 ∈ 𝐽)) |
9 | 6, 8 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) ↔ (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽))) |
10 | 9 | spcgv 3582 | . . . . . . 7 ⊢ (𝐴 ∈ 𝒫 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽))) |
11 | 5, 10 | syl 17 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽))) |
12 | 11 | com23 86 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → (𝐴 ⊆ 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → ∪ 𝐴 ∈ 𝐽))) |
13 | 12 | ex 412 | . . . 4 ⊢ (𝐽 ∈ Top → (𝐴 ⊆ 𝐽 → (𝐴 ⊆ 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → ∪ 𝐴 ∈ 𝐽)))) |
14 | 13 | pm2.43d 53 | . . 3 ⊢ (𝐽 ∈ Top → (𝐴 ⊆ 𝐽 → (∀𝑥(𝑥 ⊆ 𝐽 → ∪ 𝑥 ∈ 𝐽) → ∪ 𝐴 ∈ 𝐽))) |
15 | 3, 14 | mpid 44 | . 2 ⊢ (𝐽 ∈ Top → (𝐴 ⊆ 𝐽 → ∪ 𝐴 ∈ 𝐽)) |
16 | 15 | imp 406 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1532 = wceq 1534 ∈ wcel 2099 ∀wral 3057 ∩ cin 3944 ⊆ wss 3945 𝒫 cpw 4598 ∪ cuni 4903 Topctop 22788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5293 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-in 3952 df-ss 3962 df-pw 4600 df-uni 4904 df-top 22789 |
This theorem is referenced by: iunopn 22793 unopn 22798 0opn 22799 topopn 22801 tgtop 22869 ntropn 22946 toponmre 22990 neips 23010 txcmplem1 23538 unimopn 24398 metrest 24426 cnopn 24696 locfinreflem 33435 cvmscld 34877 mblfinlem3 37126 mblfinlem4 37127 ismblfin 37128 topclat 48003 toplatlub 48005 |
Copyright terms: Public domain | W3C validator |