![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcgv | Structured version Visualization version GIF version |
Description: Rule of specialization, using implicit substitution. Compare Theorem 7.3 of [Quine] p. 44. (Contributed by NM, 22-Jun-1994.) Avoid ax-10 2130, ax-11 2147. (Revised by Wolf Lammen, 25-Aug-2023.) |
Ref | Expression |
---|---|
spcgv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcgv | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3489 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
3 | spcgv.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 3 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → (𝜑 ↔ 𝜓)) |
5 | 2, 4 | spcdv 3580 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥𝜑 → 𝜓)) |
6 | 1, 5 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1532 = wceq 1534 ∈ wcel 2099 Vcvv 3470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 |
This theorem is referenced by: spcv 3591 mob2 3709 sbceqal 3840 intss1 4962 dfiin2g 5030 alxfr 5402 friOLD 5634 funmo 6563 isofrlem 7343 tfisi 7858 limomss 7870 nnlim 7879 f1oweALT 7971 pssnn 9187 pssnnOLD 9284 findcard3 9304 findcard3OLD 9305 frmin 9767 ttukeylem1 10527 rami 16978 ramcl 16992 islbs3 21037 mplsubglem 21935 mpllsslem 21936 uniopn 22793 chlimi 31038 iinabrex 32353 dfon2lem3 35376 dfon2lem8 35381 neificl 37221 hashnexinj 41594 ismrcd1 42109 mnuop23d 43694 |
Copyright terms: Public domain | W3C validator |