Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  symreleq Structured version   Visualization version   GIF version

Theorem symreleq 38025
Description: Equality theorem for symmetric relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
symreleq (𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆))

Proof of Theorem symreleq
StepHypRef Expression
1 cnveq 5871 . . . 4 (𝑅 = 𝑆𝑅 = 𝑆)
2 id 22 . . . 4 (𝑅 = 𝑆𝑅 = 𝑆)
31, 2sseq12d 4012 . . 3 (𝑅 = 𝑆 → (𝑅𝑅𝑆𝑆))
4 releq 5773 . . 3 (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆))
53, 4anbi12d 631 . 2 (𝑅 = 𝑆 → ((𝑅𝑅 ∧ Rel 𝑅) ↔ (𝑆𝑆 ∧ Rel 𝑆)))
6 dfsymrel2 38016 . 2 ( SymRel 𝑅 ↔ (𝑅𝑅 ∧ Rel 𝑅))
7 dfsymrel2 38016 . 2 ( SymRel 𝑆 ↔ (𝑆𝑆 ∧ Rel 𝑆))
85, 6, 73bitr4g 314 1 (𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wss 3945  ccnv 5672  Rel wrel 5678   SymRel wsymrel 37655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5144  df-opab 5206  df-xp 5679  df-rel 5680  df-cnv 5681  df-dm 5683  df-rn 5684  df-res 5685  df-symrel 38011
This theorem is referenced by:  eqvreleq  38069
  Copyright terms: Public domain W3C validator