![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > symreleq | Structured version Visualization version GIF version |
Description: Equality theorem for symmetric relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
symreleq | ⊢ (𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 5871 | . . . 4 ⊢ (𝑅 = 𝑆 → ◡𝑅 = ◡𝑆) | |
2 | id 22 | . . . 4 ⊢ (𝑅 = 𝑆 → 𝑅 = 𝑆) | |
3 | 1, 2 | sseq12d 4012 | . . 3 ⊢ (𝑅 = 𝑆 → (◡𝑅 ⊆ 𝑅 ↔ ◡𝑆 ⊆ 𝑆)) |
4 | releq 5773 | . . 3 ⊢ (𝑅 = 𝑆 → (Rel 𝑅 ↔ Rel 𝑆)) | |
5 | 3, 4 | anbi12d 631 | . 2 ⊢ (𝑅 = 𝑆 → ((◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅) ↔ (◡𝑆 ⊆ 𝑆 ∧ Rel 𝑆))) |
6 | dfsymrel2 38016 | . 2 ⊢ ( SymRel 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ Rel 𝑅)) | |
7 | dfsymrel2 38016 | . 2 ⊢ ( SymRel 𝑆 ↔ (◡𝑆 ⊆ 𝑆 ∧ Rel 𝑆)) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ⊆ wss 3945 ◡ccnv 5672 Rel wrel 5678 SymRel wsymrel 37655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 df-opab 5206 df-xp 5679 df-rel 5680 df-cnv 5681 df-dm 5683 df-rn 5684 df-res 5685 df-symrel 38011 |
This theorem is referenced by: eqvreleq 38069 |
Copyright terms: Public domain | W3C validator |