Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreleq Structured version   Visualization version   GIF version

Theorem eqvreleq 38068
Description: Equality theorem for equivalence relation. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
eqvreleq (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆))

Proof of Theorem eqvreleq
StepHypRef Expression
1 refreleq 37987 . . 3 (𝑅 = 𝑆 → ( RefRel 𝑅 ↔ RefRel 𝑆))
2 symreleq 38024 . . 3 (𝑅 = 𝑆 → ( SymRel 𝑅 ↔ SymRel 𝑆))
3 trreleq 38048 . . 3 (𝑅 = 𝑆 → ( TrRel 𝑅 ↔ TrRel 𝑆))
41, 2, 33anbi123d 1433 . 2 (𝑅 = 𝑆 → (( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅) ↔ ( RefRel 𝑆 ∧ SymRel 𝑆 ∧ TrRel 𝑆)))
5 df-eqvrel 38051 . 2 ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅))
6 df-eqvrel 38051 . 2 ( EqvRel 𝑆 ↔ ( RefRel 𝑆 ∧ SymRel 𝑆 ∧ TrRel 𝑆))
74, 5, 63bitr4g 314 1 (𝑅 = 𝑆 → ( EqvRel 𝑅 ↔ EqvRel 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1534   RefRel wrefrel 37648   SymRel wsymrel 37654   TrRel wtrrel 37657   EqvRel weqvrel 37659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5143  df-opab 5205  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-refrel 37978  df-symrel 38010  df-trrel 38040  df-eqvrel 38051
This theorem is referenced by:  eqvreleqi  38069  eqvreleqd  38070  erALTVeq1  38135
  Copyright terms: Public domain W3C validator