Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0p1 Structured version   Visualization version   GIF version

Theorem sge0p1 45804
Description: The addition of the next term in a finite sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0p1.1 (𝜑𝑁 ∈ (ℤ𝑀))
sge0p1.2 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ (0[,]+∞))
sge0p1.3 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵)
Assertion
Ref Expression
sge0p1 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴)) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒 𝐵))
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem sge0p1
StepHypRef Expression
1 sge0p1.1 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
2 fzsuc 13586 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
31, 2syl 17 . . . 4 (𝜑 → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)}))
43mpteq1d 5245 . . 3 (𝜑 → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴) = (𝑘 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↦ 𝐴))
54fveq2d 6904 . 2 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴)) = (Σ^‘(𝑘 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↦ 𝐴)))
6 nfv 1909 . . 3 𝑘𝜑
7 ovex 7457 . . . 4 (𝑀...𝑁) ∈ V
87a1i 11 . . 3 (𝜑 → (𝑀...𝑁) ∈ V)
9 snex 5435 . . . 4 {(𝑁 + 1)} ∈ V
109a1i 11 . . 3 (𝜑 → {(𝑁 + 1)} ∈ V)
11 fzp1disj 13598 . . . 4 ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅
1211a1i 11 . . 3 (𝜑 → ((𝑀...𝑁) ∩ {(𝑁 + 1)}) = ∅)
13 0xr 11297 . . . . 5 0 ∈ ℝ*
1413a1i 11 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ∈ ℝ*)
15 pnfxr 11304 . . . . 5 +∞ ∈ ℝ*
1615a1i 11 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → +∞ ∈ ℝ*)
17 iccssxr 13445 . . . . 5 (0[,]+∞) ⊆ ℝ*
18 simpl 481 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝜑)
19 fzelp1 13591 . . . . . . 7 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
2019adantl 480 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
21 sge0p1.2 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ (0[,]+∞))
2218, 20, 21syl2anc 582 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ (0[,]+∞))
2317, 22sselid 3978 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℝ*)
24 iccgelb 13418 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 0 ≤ 𝐴)
2514, 16, 22, 24syl3anc 1368 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 0 ≤ 𝐴)
26 iccleub 13417 . . . . 5 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,]+∞)) → 𝐴 ≤ +∞)
2714, 16, 22, 26syl3anc 1368 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ≤ +∞)
2814, 16, 23, 25, 27eliccxrd 44914 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → 𝐴 ∈ (0[,]+∞))
29 simpl 481 . . . 4 ((𝜑𝑘 ∈ {(𝑁 + 1)}) → 𝜑)
30 elsni 4647 . . . . . 6 (𝑘 ∈ {(𝑁 + 1)} → 𝑘 = (𝑁 + 1))
3130adantl 480 . . . . 5 ((𝜑𝑘 ∈ {(𝑁 + 1)}) → 𝑘 = (𝑁 + 1))
32 simpr 483 . . . . . 6 ((𝜑𝑘 = (𝑁 + 1)) → 𝑘 = (𝑁 + 1))
33 peano2uz 12921 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (ℤ𝑀))
34 eluzfz2 13547 . . . . . . . 8 ((𝑁 + 1) ∈ (ℤ𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
351, 33, 343syl 18 . . . . . . 7 (𝜑 → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
3635adantr 479 . . . . . 6 ((𝜑𝑘 = (𝑁 + 1)) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))
3732, 36eqeltrd 2828 . . . . 5 ((𝜑𝑘 = (𝑁 + 1)) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
3829, 31, 37syl2anc 582 . . . 4 ((𝜑𝑘 ∈ {(𝑁 + 1)}) → 𝑘 ∈ (𝑀...(𝑁 + 1)))
3929, 38, 21syl2anc 582 . . 3 ((𝜑𝑘 ∈ {(𝑁 + 1)}) → 𝐴 ∈ (0[,]+∞))
406, 8, 10, 12, 28, 39sge0splitmpt 45801 . 2 (𝜑 → (Σ^‘(𝑘 ∈ ((𝑀...𝑁) ∪ {(𝑁 + 1)}) ↦ 𝐴)) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒^‘(𝑘 ∈ {(𝑁 + 1)} ↦ 𝐴))))
41 ovex 7457 . . . . 5 (𝑁 + 1) ∈ V
4241a1i 11 . . . 4 (𝜑 → (𝑁 + 1) ∈ V)
43 id 22 . . . . 5 (𝜑𝜑)
44 eleq1 2816 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → (𝑘 ∈ (𝑀...(𝑁 + 1)) ↔ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))))
4544anbi2d 628 . . . . . . . 8 (𝑘 = (𝑁 + 1) → ((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) ↔ (𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1)))))
46 sge0p1.3 . . . . . . . . 9 (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵)
4746eleq1d 2813 . . . . . . . 8 (𝑘 = (𝑁 + 1) → (𝐴 ∈ (0[,]+∞) ↔ 𝐵 ∈ (0[,]+∞)))
4845, 47imbi12d 343 . . . . . . 7 (𝑘 = (𝑁 + 1) → (((𝜑𝑘 ∈ (𝑀...(𝑁 + 1))) → 𝐴 ∈ (0[,]+∞)) ↔ ((𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝐵 ∈ (0[,]+∞))))
4948, 21vtoclg 3540 . . . . . 6 ((𝑁 + 1) ∈ V → ((𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝐵 ∈ (0[,]+∞)))
5041, 49ax-mp 5 . . . . 5 ((𝜑 ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝐵 ∈ (0[,]+∞))
5143, 35, 50syl2anc 582 . . . 4 (𝜑𝐵 ∈ (0[,]+∞))
5242, 51, 46sge0snmpt 45773 . . 3 (𝜑 → (Σ^‘(𝑘 ∈ {(𝑁 + 1)} ↦ 𝐴)) = 𝐵)
5352oveq2d 7440 . 2 (𝜑 → ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒^‘(𝑘 ∈ {(𝑁 + 1)} ↦ 𝐴))) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒 𝐵))
545, 40, 533eqtrd 2771 1 (𝜑 → (Σ^‘(𝑘 ∈ (𝑀...(𝑁 + 1)) ↦ 𝐴)) = ((Σ^‘(𝑘 ∈ (𝑀...𝑁) ↦ 𝐴)) +𝑒 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3471  cun 3945  cin 3946  c0 4324  {csn 4630   class class class wbr 5150  cmpt 5233  cfv 6551  (class class class)co 7424  0cc0 11144  1c1 11145   + caddc 11147  +∞cpnf 11281  *cxr 11283  cle 11285  cuz 12858   +𝑒 cxad 13128  [,]cicc 13365  ...cfz 13522  Σ^csumge0 45752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-oi 9539  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-n0 12509  df-z 12595  df-uz 12859  df-rp 13013  df-xadd 13131  df-ico 13368  df-icc 13369  df-fz 13523  df-fzo 13666  df-seq 14005  df-exp 14065  df-hash 14328  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-clim 15470  df-sum 15671  df-sumge0 45753
This theorem is referenced by:  caratheodorylem1  45916
  Copyright terms: Public domain W3C validator